Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC nhọn. Kẻ các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh H cách đều 3 cạnh của tam giác DEF. b) Gọi Q là giao điểm của AD và EF. Chứng minh HQ.AD = AQ.HD

cho tam giác abc nhọn , kẻ các đường cao ad,be,cf cắt nhau tại h
a,chứng minh : h cách đều 3 cạnh tam giác def
b,gọi q là giao điểm của ad và ef . Chứng minh hq.ad=aq.hd
c,chứng minh be.cf + ae.af = ab.ac
d, qua a kẻ đường thẳng song song với cf cắt be tại k và kẻ đường thẳng song song với be cắt cf tại n,gọi m là trung điểm bc.Chứng minh am vuông góc nk
mọi người giúp mình câu b,c,d nhé ! mình cảm ơn
1 Xem trả lời
Hỏi chi tiết
12.638
38
17
Ngoc Hai
24/07/2017 12:46:16
cho tam giác abc nhọn , kẻ các đường cao ad,be,cf cắt nhau tại h
a,chứng minh : h cách đều 3 cạnh tam giác def
Giai 
Hãy nhớ lại kiến thức lớp 7: Trong 1 tam giác, 3 đường phân giác cắt nhau tại 1 điểm và điểm đó cách đều 3 cạnh của tam giác (điểm này gọi là tâm đường tròn nộ tiếp). Nối E -> F; E -> D ; D -> F. Ta sẽ chứng minh H là giao điểm 3 đường phân giác. 
Ta chứng minh được ∆AFC ~ ∆AEB(g.g)
=> AF/AE = AC/AB
=> AF/AC = AE/AB.
=> ta chứng minh được ∆AEF ~ ∆ABC(c.g.c)
=> góc AEF = góc ABC, chứng minh tương tư ta được ∆CED ~ ∆CBA
=> góc CED = góc ABC
=> góc AEF = góc CED ( = góc ABC), ta có: góc FEB = 90º - góc AEF và góc BED = 90º - góc CED, mà góc AEF = góc CED
=> góc FEB = góc BED
=> BE là phân giác góc FED
=> EH là phân giác góc FED, chứng minh tương tự ta được DH là phân giác góc EDF và FH là phân giác góc EFD 
=> đpcm

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×