Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho tam giác ABC nội tiếp (O), AB < AC, đường cao AH, trung tuyến AM. Gọi P, Q là hai điểm thuộc cung BC không chứa sao cho PQ//BC và tia AP nằm giữa hai tia AQ và AH

Cho tam giác ABC nội tiếp (O), AB < AC, đường cao AH, trung tuyến AM. Gọi P, Q là hai điểm thuộc cung BC không chứa sao cho PQ//BC và tia AP nằm giữa hai tia AQ và AH. Gọi K, X thứ tự là hình chiếu vuông góc của B lên AP, AQ; L, Y thứ tự là hình chiếu vuông góc của C lên AP, AQ.
1. Chứng minh rằng XKYL là tứ giác nội tiếp tâm M.
2. Chứng minh rằng HM là phân giác góc KHL; H, K, M, L cùng thuộc một đường tròn( đường tròn tâm I).
3. Gọi giao điểm khác K của AP và (I) là N. Chứng minh rằng NL luôn đi qua một điểm cố định khi P, Q di chuyển.
0 Xem trả lời
Hỏi chi tiết
524

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×