Cho hình vuông ABCD. Trên tia đối BA lấy 1 điểm E, trên tia đối của CB lấy 1 điểm F sao cho EA = FC.
Chứng minh rằng tam giác FED vuông cân.
Gọi O là giao điểm của 2 đường chéo AC và BD, gọi I là Trung điểm FE. Chứng minh rằng O,C,I thẳng hàng
Cho tam giác ABC vuông tại A. (AC>AB),Đường cao AH. Trong nửa mặt phẳng bờ có chứa AH vẽ hình vuông AHKE.
Chứng minh rằng > 450.
Gọi P là giao điểm của AC và KE. Chứng minh rằng tam giác ABP vuông cân.
Gọi Q là đỉnh thứ tư của Cho hình bình hành APQB, gọi I là giao điểm của BP và AQ. Chứng minh rằng H,I,E thẳng hàng.
Chứng minh rằng HE//QK
Cho hình vuông ABCD . Trên cạnh BC lấy 1 điểm tùy ý. Đường thẳng vuông góc với AM tại M cắt CD tại E và AB tại F. Chứng minh rằng MA = FE
Cho hình vuông ABCD; điểm E thuộc cạnh CD,điểm F thuộc cạnh BC. Biết = 450 .Chứng minh rằng chu vi tam giác CFE bằng nửa chu vi hình vuông ABCD
Cho hình vuông ABCD; điểm E thuộc cạnh CD,điểm F thuộc cạnh BC sao cho chu vi tam giác CFE bằng nửa chu vi hình vuông ABCD . Chứng minh rằng = 450
Cho hình thang vuông ABCD có đáy CD = 9 cm,AB = 4 cm,cạnh xiên BC = 13 cm. Trên cạnh BC lấy điểm M sao cho BM = BA. Đường thẳng vuông góc với BC tại M cắt AD tại N.
Chứng minh rằng : điểm N nằm trên tia phân giác góc ABM.
Chứng minh rằng : BC2 = BN2 + ND2 + DC2
Tính diện tích hình thang ABCD
Cho các điểm E và F nằm trên các cạnh AB và BC của hình bình hành ABCD sao cho FA = EC. Gọi I là giao điểm của FA và EC. Chứng minh rằng ID là phân giác của
Cho hình thoi ABCD có góc B tù . Kẻ BM và BN lần lượt vuông góc với các cạnh AD và CD tại M và N. Biết rằng . Tính các góc hình thoi
Cho hình thang ABCD có độ dài 2 đáy là AB = 5 cm và CD = 15 cm, độ dài 2 đường chéo là AC = 16 cm, BD = 12 cm. Từ A vẽ đường thẳng song song với BD cắt CD tại E.
Chứng minh rằng ACE là tam giác vuông tại A.
Tính diện tích hình thang ABCD.
Ở bên ngoài hình bình hành ABCD vẽ 2 hình vuông ABEF và ADGH .Chứng minh :
AC = FH; AC ( FH.
CEG là tam giác vuông cân.
Cho tam giác ABC có BC = a và đường cao AH = h.Từ một điểm trên AH vẽ đườnh thẳng song song với BC cắt AB và AC tại P và Q.Vẽ và QR vuông góc với BC.
a.Tính diện tích PQRS theo a, h, x (AM = x).
b.Xác định vị trí M trên AH để diện tích này lớn nhất?
Cho tứ giác ABCD có hai đường chéo cắt nhau tại O.Kí hiệu S là diện tích. Cho SAOB = a2 ; SCOD = b2 với a , b là 2 số cho trước.Hãy tìm GTNN của SABCD?
Cho tam giác ABC cân tại A với A là góc nhọn; CD là đường phân giác góc ACB, Qua D kẻ đường thẳng vuông góc với CD; đường nay cắt đường thẳng CB tại E , Chứng minh rằng BD = EC
Cho hình vuông ABCD cạnh a. điểm M di động trên cạnh AB; N di động trên cạnh AD sao cho chu vi tam giác AMN không đổi và bằng 2a.Xác định vị trí của MN để diện tích tam giác CMN đạt giá trị lớn nhất và tính giá trị lớn nhất đó
Cho tam giác ABC vuông cân tại A.Lấy điểm M tùy ý trên cạnh AC. Kẻ tia Ax vuông góc với BM. Gọi H là giao điểm của Ax với BC và K là điểm đối xứngvới C qua H. Kẻ tia Ky vuông góc với BM. Gọi I là giao điểm của Ky với AB. Tính
Cho hình vuông ABCD. Trên các tia đối của CB và DC, lấy các điểm M,N sao cho DN =BM. Các đường thẳng song song kẻ từ M với AN và từ N với AM cắt nhau tại F . Chứng minh rằng :
Tứ giác ANFM là hình vuông.
Điểm F nằm trên tia phân giác của góc MCN và góc FCA = 900
Ba điểm B,O,D thẳng hàng và tứ giác BOFC là hình thang ( O là trung điểm FA)
Cho hình vuông ABCD . Trên cạnh CD, lấy M bất kì. Các tia phân giác của các góc BAM và DAM lần lượt cắt cạnh BC tại E và cắt cạnh CD tại