Bài tập  /  Bài đang cần trả lời

Chứng minh DEIF là hình thoi

B1: Cho tam giác đều ABC . Gọi H là trực tâm của tam giác, đường cao AD. M là một điểm trên cạnh BC, từ M vẽ ME vuông góc AB ( E thuộc AB) , MF vuông góc AC ( F thuộc AC ). Gọi I là trung điểm của AM. Chứng minh :
a) DEIF là hình thoi
b) MH,ID,EF đồng quy
1 Xem trả lời
Hỏi chi tiết
1.550
2
0
Trịnh Quang Đức
18/06/2019 20:30:51
a/ Các tam giác vuông AEM và ADM có EI và DI là trung tuyến ứng với AM nên
=> EI = DI ( = ½ AM)
=> Tam giác EID cân tại I
Lại có các tam giác AEI và ADI cân tại I nên:
^EIM = 2^EAI và ^MID = 2^IAD
=> ^EID = ^EIM + ^MID = 2(^EAI + ^IAD) = 2^EAD = 2. 30 = 60 độ
(Vì AD là đường cao nên là phan giác ^A)
Tam giác EID cân lại có ^EID = 60 độ nên đều
Tương tự tam giác IFD đều nên: EI = IF = FD = DE => Tứ giác DEIF là hình thoi
b) Gọi O là giao EF và DI và K là trung điểm AH, ta có IK là trng bình tam giác AMH và OH là trung bình tam giác AID.
=> HO//IK và HM//IK
=> Tia HO và HM trùng nhau hay M, H, O thẳng hàng => MH, ID, EF đồng quy tại O

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×