Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Chứng minh MD.MC = AM^2 = OM^2 - R^2. Chứng minh MA = MB. Chứng minh MB^2 = ME.MF

cho (O;R) và (O';R') cắt nhau tại C và D. M cố định trên tia đối tia CD, vẽ tiếp tuyến MA với (O), tiếp tuyến MB với (O'). từ M vẽ cát tuyến góc MÈ đến (O) ( E ở giữa MF)
a, chứng minh MD.MC=AM^2=OM^2-R^2
b, chứng minh MA=MB
c, chứng minh MB^2=ME.MF
d, vẽ HK là tiếp tuyến chung của (O) và (O'), H thuộc (O), K thuộc (O'). chứng minh DC đi qua trung điểm HK
e, vẽ tai Dx trên nửa mặt phẳng bờ Dx có chứa điểm B sao cho goác CDx= góc CAD. chứng minh Dx là tiếp tuyến (O)
0 Xem trả lời
Hỏi chi tiết
1.394

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×