Bài tập  /  Bài đang cần trả lời

Chứng minh rằng 1 + tan^2x = 1/cos^2x

8 Xem trả lời
Hỏi chi tiết
53.241
22
10
Nguyễn Thành Trương
22/09/2018 20:40:52
a) 1+tan^2a =1+(sin^2a)/(cos^2a) = 1+(1-cos^2a)/(cos^2a) = (cos^2a+1-cos^2a)/cos^2a = 1/cos^2a
b) 1+cot^2a =1+(cos^2a)/(sin^2a) = 1+(1-sin^2a)/(sin^2a) = (sin^2a+1-sin^2a)/(sin^2a)= 1/sin^2a

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
14
9
Le huy
22/09/2018 20:42:33
a) Chứng minh rằng 1 + tan^2x = 1/cos^2x
VT =1 + sin^2 x /cos^2 x =(cos^2 x +sin^2 x) /cos^2 x
(cos^2 x +sin^2 x) =1 => (cos^2 x +sin^2 x) /cos^2 x =1/cos^2 x =VP =>dpcm
7
1
Le huy
22/09/2018 20:45:01
b) 1 + cot ^2x = 1/ sin^2x
VT =1 + cos^2 x /sin^2 x =(sin^2 x +cos^2 x) / sin^2 x
( sin^2 x +cos^2 x ) =1 => (cos^2 x +sin^2 x) /sin^2 x =1/ sin ^2 x =VP =>dpcm
9
3
2
3
Le huy
22/09/2018 20:52:24
c)
(1+cosx)/ sinx =sinx/(1-cosx)
<=> (1+cosx) (1-cosx) =sin^2 x
<=> (1-cos^2x) =sin^2 x
<=> 1 =cos^2x+sin^2 x luôn đúng => dpcm
d)
(tãnx +1)/(tãnx-1)=(1+cotx )/(1-cotx)
cơ bản tan x .cotx =1
VT = (1/cotx +1)/(1/cotx -1)=[(1+cotx ) /cotx ]/ [(1-cotx)/cotx]
=[(1+cotx ) ]/ [(1-cotx) ] =VP => DPCM
1
3
Le huy
22/09/2018 20:57:53
e)
VT=(1-4sin^2 x cos^2 x )/(sinx -cosx )^2
=(1-(2sin xcos x)^2 )/(sinx -cosx )^2
=(1- sin^2 2x) /(sinx -cosx )^2
=(cos 2x) ^2 /(sinx -cosx )^2
=(cos^2x -sin^2 x) ^2 /(sinx -cosx )^2
=[(cos x -sin x)(cos x +sin x) ] ^2 /(sinx -cosx )^2
= (cos x -sin x)^2 (cos x +sin x)^2 /(sinx -cosx )^2
= (cos x +sin x)^2 =VP => dpcm
5
1
2
2

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×