Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 1 (trang 40 SGK Hình học 10): Chứng minh rằng trong tam giác ABC có:
a) sin A = sin(B + C) ; b) cos A = -cos(B + C)
Lời giải:
a) Trong ΔABC có: A + (B + C) = 180o hay A = 180o - (B + C) nghĩa là A và (B + C) bù nhau.
Theo tính chất của hai góc bù nhau thì: sinA = sin(B+C) (đpcm)
b) Tương tự câu a, ta có: cosA = -cos(B+C) (đpcm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |