Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 30 (trang 27 sgk Giải Tích 12 nâng cao): Cho hàm số y=f(x)=x3-3x2+1
a)Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của Phương trình f’’(x)= 0.
b)Viết công thức chuyển hệ tọa độ trong phép tịnh tiến vectơ OI và viết Phương trình của đường cong với hệ tọa độ IXY. Từ đó suy ra bằng I là tâm đối xứng đường cong (C).
c)Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hện tọa độ Oxy. Chứng minh rằng trên khoảng (-∞;1) đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng (1; +∞) đường cong (C) nằm phía trên tiếp tuyến đó.
Lời giải:
f' (x)=3x2-6x
f'' (x)=6x-6;f'' (x)=0 <=> x=1 =>f (1) = -1
Vậy I(1; -1)
Công thức chuyển hệ trục tọa độ trong phép tịnh tiến theo vectơ OI:
Phương trình của (C) đối với hệ trục IXY là:
Y-1=(X+1)3-3(X+1)2+1 hay Y=X3-3X
Vì hàm số Y=X3-3X là hàm số lẻ nên đồ thị của nó nhận gốc tọa độ I làm tâm đối xứng.
* Tiếp tuyến với (C) tại I(1; -1) đối với hệ tọa độ Oxy là:
y=f' (1)(x-1)+f(1) với f’(1) = -3; f(1) = -1
Nên Phương trình tiếp tuyến: y-3(x-1)+(-1) hay y = -3x + 2
Xét hiệu (x3-3x2+1)-(-3x+2)=(x-1)3
Với x ∈(-∞;1)=>(x-1)3<0 nên đường cong (C): y=x3-33+1 nằm phía dưới tiếp tuyến y = -3x + 2
Với x ∈(1; +∞)=>(x-1)3>0 nên đường cong (C): nằm phía trên tiếp tuyến tại I.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |