Bài tập  /  Bài đang cần trả lời

Giải bài 30 trang 27 SGK Giải Tích 12 nâng cao - Bài 4: Đồ thị của hàm số và phép tịnh tiến hệ tọa độ

1 Xem trả lời
Hỏi chi tiết
509
0
0
Nguyễn Thị Thảo Vân
07/04/2018 14:32:46

Bài 4: Đồ thị của hàm số và phép tịnh tiến hệ tọa độ

Bài 30 (trang 27 sgk Giải Tích 12 nâng cao): Cho hàm số y=f(x)=x3-3x2+1

a)Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của Phương trình f’’(x)= 0.

b)Viết công thức chuyển hệ tọa độ trong phép tịnh tiến vectơ OI và viết Phương trình của đường cong với hệ tọa độ IXY. Từ đó suy ra bằng I là tâm đối xứng đường cong (C).

c)Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hện tọa độ Oxy. Chứng minh rằng trên khoảng (-∞;1) đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng (1; +∞) đường cong (C) nằm phía trên tiếp tuyến đó.

Lời giải:

f' (x)=3x2-6x

f'' (x)=6x-6;f'' (x)=0 <=> x=1 =>f (1) = -1

Vậy I(1; -1)

Công thức chuyển hệ trục tọa độ trong phép tịnh tiến theo vectơ OI:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Phương trình của (C) đối với hệ trục IXY là:

Y-1=(X+1)3-3(X+1)2+1 hay Y=X3-3X

Vì hàm số Y=X3-3X là hàm số lẻ nên đồ thị của nó nhận gốc tọa độ I làm tâm đối xứng.

* Tiếp tuyến với (C) tại I(1; -1) đối với hệ tọa độ Oxy là:

y=f' (1)(x-1)+f(1) với f’(1) = -3; f(1) = -1

Nên Phương trình tiếp tuyến: y-3(x-1)+(-1) hay y = -3x + 2

Xét hiệu (x3-3x2+1)-(-3x+2)=(x-1)3

Với x ∈(-∞;1)=>(x-1)3<0 nên đường cong (C): y=x3-33+1 nằm phía dưới tiếp tuyến y = -3x + 2

Với x ∈(1; +∞)=>(x-1)3>0 nên đường cong (C): nằm phía trên tiếp tuyến tại I.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
Gửi câu hỏi
×