Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 8 (trang 62 SGK Hình học 10): Trong tam giác ABC. Chứng minh rằng
a) Góc A nhọn khi và chỉ khi a2 < b2 + c2
b) Góc A tù khi và chỉ khi a2 > b2 + c2
c) Góc A vuông khi và chỉ khi a2 = b2 + c2
Lời giải:
Theo hệ quả định lí côsin ta có:
a) a2 < b2 + c2 ⇔ b2 + c2 - a2 > 0 ⇔ cosA > 0
⇔ A là góc nhọn
Vậy góc A nhọn khi và chỉ khi a2 < b2 + c2
b) a2 > b2 + c2 ⇔ b2 + c2 - a2 < 0 ⇔ cosA < 0
⇔ A là góc tù
Vậy góc A tù khi và chỉ khi a2 > b2 + c2
c) a2 = b2 + c2
Theo định lí Pitago suy ra A là góc vuông
Vậy góc A vuông khi và chỉ khi a2 = b2 + c2
(Lưu ý: ở phần c) bạn có thể làm như a) và b) để suy ra cosA = 0 cũng được)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |