Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Tìm giá trị lớn nhất - giá trị nhỏ nhất của hàm số
Để tìm giá trị lớn nhất, giá trị nhỏ nhất của một số hàm số lượng giác, ta biến đổi hàm số đã cho về dạng y = a + bsint hoặc y = a + bcost và sử dụng kết quả: – 1 ≤sinx ≤1; – 1 ≤cosx ≤1.
Bài 1: Hàm số y = 2sinxcosx + cos2x có giá trị lớn nhất là
A. 3
B. 2√2
C. 2
D. √2
Lời giải:
Ta có y = sin2xcos2x = √2 sin(2x + π/4) nên giá trị lớn nhất của hàm số là √2.
Đáp án là D.
Bài 2: Hàm số y = (sinx – cosx)2 + cos2x có giá trị nhỏ nhất là:
A. - 1
B. 1- √2
C. 0
D. 1 + √2
Lời giải:
Ta có y = sin2x + cos2x -2sinxcosx + cos2x
= 1 – sin2x + cos2x = 1 - √2 sin(2x - π/4).
Từ đó suy ra giá trị nhỏ nhất của hàm số là 1 - √2.
Đáp án là B.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |