Trong không gian với hệ tọa độ Oxyz, cho các điểm \[A\left( {1;0;2} \right)\], \[B\left( { - 1;1;3} \right)\], \[C\left( {3;2;0} \right)\] và mặt phẳng (P):x+2y−2z+1=0. Biết rằng điểm \[M\left( {a;b;c} \right)\] thuộc mặt phẳng (P) sao cho biểu thức \[M{A^2} + 2M{B^2} - M{C^2}\] đạt giá trị nhỏ nhất. Khi đó \[a + b + c\] bằng:
Tôi yêu Việt Nam | Chat Online | |
05/09/2024 22:39:14 (Toán học - Lớp 12) |
9 lượt xem
Trong không gian với hệ tọa độ Oxyz, cho các điểm \[A\left( {1;0;2} \right)\], \[B\left( { - 1;1;3} \right)\], \[C\left( {3;2;0} \right)\] và mặt phẳng (P):x+2y−2z+1=0. Biết rằng điểm \[M\left( {a;b;c} \right)\] thuộc mặt phẳng (P) sao cho biểu thức \[M{A^2} + 2M{B^2} - M{C^2}\] đạt giá trị nhỏ nhất. Khi đó \[a + b + c\] bằng:
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \[ - 1\] 0 % | 0 phiếu |
B. 1 0 % | 0 phiếu |
C. 3 0 % | 0 phiếu |
D. 5 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho số phức z thỏa mãn \[3z + i\left( {\bar z + 8} \right) = 0\]. Tổng phần thực và phần ảo của z bằng: (Toán học - Lớp 12)
- Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = {x^2} + 8\ln 2x - mx\] đồng biến trên \[\left( {0; + \infty } \right)\]? (Toán học - Lớp 12)
- Cho hàm số \[y = m{x^3} + m{x^2} - \left( {m + 1} \right)x + 1\]. Tìm tất cả các giá trị của m để hàm số nghịch biến trên R? (Toán học - Lớp 12)
- Cho \[a,{\mkern 1mu} {\mkern 1mu} b\] là các số thực dương thỏa mãn \[{2^{a + b + 2ab - 3}} = \frac\]. Giá trị nhỏ nhất của biểu thức \[{a^2} + {b^2}\] là: (Toán học - Lớp 12)
- Tìm nguyên hàm \[\int {\left( {2x - 1} \right)\ln xdx} \]. (Toán học - Lớp 12)
- Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{1} = \frac{1} = \frac{z}{2}\] và hai mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} x - 2y + 3z = 0,\left( Q \right):{\mkern ... (Toán học - Lớp 12)
- Có bao nhiêu giá trị nguyên dương của m để hàm số \[y = \frac{8}{3}{x^3} + 2\ln x - mx\] đồng biến trên \[\left( {0;{\mkern 1mu} {\mkern 1mu} 1} \right)?\] (Toán học - Lớp 12)
- Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{2} = \frac{{ - 2}} = \frac{1}\] và điểm \[A\left( { - 1;{\mkern 1mu} {\mkern 1mu} 2;{\mkern 1mu} {\mkern 1mu} 0} \right).\] ... (Toán học - Lớp 12)
- Cho cấp số cộng \[\left( \right)\] thỏa mãn \[{u_1} + {u_{2020}} = 2,\] \[{u_{1001}} + {u_{1221}} = 1.\] Tính \[{u_1} + {u_2} + .... + {u_{2021}}.\] (Toán học - Lớp 12)
- Trong không gian với hệ tọa độ \[Oxyz,\] cho đường thẳng \[\Delta :{\mkern 1mu} {\mkern 1mu} \frac{1} = \frac{2} = \frac{z}{{ - 2}}\] và mặt phẳng \[\left( P \right):{\mkern 1mu} {\mkern 1mu} 2x - y + 2z - 3 = 0.\] Gọi α là góc giữa ... (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Câu nào dưới đây không đúng với doanh nghiệp độc quyền: (Tổng hợp - Đại học)
- Đối với người tiêu dùng thì biện pháp điều tiết độc quyền nào của chính phủ mang lại lợi ích cho họ: (Tổng hợp - Đại học)
- So với giá cả và sản lượng cạnh tranh, nhà độc quyền sẽ định mức giá …… và bán ra số lượng ..... (Tổng hợp - Đại học)
- Một doanh nghiệp độc quyền thấy rằng ở mức sản lượng hiện tại, doanh thu biên bằng 5 và chi phí biến bằng 4. Quyết định nào sau đây sẽ làm tối đa hóa lợi nhuận (Tổng hợp - Đại học)
- Giả sử một công ty độc quyền có MR = 2.400 - 4Q và MC = 22, doanh thu sẽ đạt tối đa khi sản xuất sản lượng: (Tổng hợp - Đại học)
- Trong ngành độc quyền hoàn toàn, doanh thu biện (MR): (Tổng hợp - Đại học)
- Yếu tố nào sau đây được xem là rào cản của việc gia nhập thị trường: (Tổng hợp - Đại học)
- Phân biệt giá cấp một: (Tổng hợp - Đại học)
- Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)
- Đường cầu sản phẩm của một ngành: Q= 1.800 - 200P Ngành này có LẠC không đổi ở mọi mức sản lượng là 1,5. Giá cả và sản lượng thế nào? Nếu phân biệt giá cấp một: (Tổng hợp - Đại học)