Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với \[A(1;0;0),{\mkern 1mu} {\mkern 1mu} B(3;2;4),{\mkern 1mu} C(0;5;4)\]. Tìm tọa độ điểm M thuộc mặt phẳng (Oxy) sao cho |MA→ +MB→ +2MC→| nhỏ nhất.
Tôi yêu Việt Nam | Chat Online | |
05/09 23:06:12 (Tổng hợp - Lớp 12) |
5 lượt xem
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với \[A(1;0;0),{\mkern 1mu} {\mkern 1mu} B(3;2;4),{\mkern 1mu} C(0;5;4)\]. Tìm tọa độ điểm M thuộc mặt phẳng (Oxy) sao cho |MA→ +MB→ +2MC→| nhỏ nhất.
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \[M(1;3;0)\] 0 % | 0 phiếu |
B. \[M(1; - 3;0)\] 0 % | 0 phiếu |
C. \[M(3;1;0)\] 0 % | 0 phiếu |
D. \[M(2;6;0)\] 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hàm số \(y = f\left( x \right)\) có bản biến thiên như sau : Hàm số \(g\left( x \right) = f\left( {{x^2} - 2x} \right)\) có bao nhiêu điểm cực trị? (Tổng hợp - Lớp 12)
- Trong không gian Oxyz, cho mặt cầu (S):x2+y2+z2+2x-4y-2z+92=0 và hai điểm \(A(0;2;0)\) \(,B(2; - 6; - 2)\). Điểm \(M\left( {a;b;c} \right)\) thuộc \(\left( S \right)\) thỏa mãn tích MA→ ⋅MB→ có giá trị nhỏ nhất. Tổng \(a + b + c\) bằng (Tổng hợp - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm SD, điểm N thuộc cạnh SA sao cho SN = 3AN . Đường thẳng MN cắt mặt phẳng (ABCD) tại P, đường thẳng PC cắt cạnh AB tại K . Trình bày cách xác định điểm K và tính tỉ số ... (Tổng hợp - Lớp 12)
- Cho hình lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\). Hình chiếu vuông góc của điểm \(A'\) lên mặt phẳng \(\left( {ABC} \right)\) trùng với trọng tâm tam giác \(ABC\). Biết khoảng cách giữa hai đường thẳng \(AA'\) và \(BC\) bằng ... (Tổng hợp - Lớp 12)
- Cho tam giác \(SAB\) vuông tại A,∠ABS=600. Phân giác của góc \(\angle ABS\) cắt \(SA\) tại \(I\). Vẽ nửa đường tròn tâm \(I\), bán kính \(IA\) (như hình vẽ). Cho miền tam giác \(SAB\) và nửa hình tròn quay xung quanh trục \(SA\) tạo nên các khối ... (Tổng hợp - Lớp 12)
- Cho hình nón đỉnh \[S\] có bán kính đáy \[R = 2\]. Biết diện tích xung quanh của hình nón là \[2\sqrt 5 \pi \]. Tính thể tích khối nón? (Tổng hợp - Lớp 12)
- Cho K(1;2;3) và phương trình mặt phẳng (P):2x-y+3=0. Viết phương trình mặt phẳng \[\left( Q \right)\] chứa OK và vuông góc với mặt phẳng (P). (Tổng hợp - Lớp 12)
- Cho đường cong (C):(m2+1)x2+m(m+3)y2+2m(m+1)x-m-1=0. Giá trị của \(m\) để \(\left( C \right)\) là đường tròn: (Tổng hợp - Lớp 12)
- Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh \(A\left( {2; - 3} \right),{\mkern 1mu} {\mkern 1mu} B\left( {3; - 2} \right)\), diện tích bằng \(\frac{3}{2}\) và trọng tâm G nằm trên đường thẳng \(3x - y - 8 = 0\). Tìm hoành độ điểm C, biết C ... (Tổng hợp - Lớp 12)
- Trong mặt phẳng phức, tập hợp các điểm biểu diễn của số phức z thỏa mãn điều kiện \(|z + 2| = |i - z|\) là đường thẳng \(d\) có phương trình (Tổng hợp - Lớp 12)
Trắc nghiệm mới nhất
- Cho hai đường tròn \[\left( {O;4{\rm{\;cm}}} \right)\] và \[\left( {O';3{\rm{\;cm}}} \right)\] biết \[OO' = 5{\rm{\;cm}}.\] Hai đường tròn trên cắt nhau tại \[A\] và \[B.\] Độ dài \[AB\] là (Toán học - Lớp 9)
- Trong một trò chơi, hai bạn Thủy và Tiến cùng chạy trên một đường tròn tâm \[O\] có bán kính \[20{\rm{\;m}}\] (hình vẽ).Độ dài dây \[AB\] nối vị trí của hai bạn đó không thể bằng bao nhiêu mét? (Toán học - Lớp 9)
- Cho đường tròn \[\left( {O;R} \right)\] có hai dây \[AB,CD\] vuông góc với nhau tại \[M.\] Giả sử \[AB = 16{\rm{\;cm}},CD = 12{\rm{\;cm}},MC = 2{\rm{\;cm}}.\] Kẻ \[OH \bot AB\] tại \[H,\] \[OK \bot CD\] tại \[K.\] Khi đó diện tích tứ giác \[OHMK\] ... (Toán học - Lớp 9)
- Cho đường tròn \(\left( {I;R} \right)\) có đường kính \[12{\rm{\;dm}}\] và đường tròn \(\left( {J;R'} \right)\) có đường kính \[18{\rm{\;dm}}.\] Nếu \(IJ = 15{\rm{\;dm}}\) thì hai đường tròn \[\left( I \right),\,\,\left( J \right)\] có vị trí tương ... (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\). Biết \(OI = 7{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn ở ngoài nhau là (Toán học - Lớp 9)
- Cho hai đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và \(\left( {I;R} \right)\) với \(R < 5{\rm{\;cm}}.\) Biết \(OI = 3{\rm{\;cm}},\) giá trị của \(R\) để hai đường tròn tiếp xúc trong là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( {O;1{\rm{\;cm}}} \right)\) và \(\left( {I;3{\rm{\;cm}}} \right)\) cắt nhau, đoạn thẳng \(OI\) có độ dài là (Toán học - Lớp 9)
- Cho hai đường tròn \(\left( O \right)\) đường kính \(7{\rm{\;cm}}\) và \(\left( {I;\,4{\rm{\;cm}}} \right).\) Biết \(OI = 1{\rm{\;cm,}}\) vị trí tương đối của hai đường tròn \(\left( O \right)\) và \(\left( I \right)\) là (Toán học - Lớp 9)
- Cho đường tròn \[\left( O \right)\] có bán kính \[R = 5{\rm{\;cm}}.\] Khoảng cách từ tâm đến dây \[AB\] là \[3{\rm{\;cm}}.\] Độ dài dây \[AB\] bằng (Toán học - Lớp 9)
- Cho hình chữ nhật \[ABCD\] có \[AC = 16{\rm{\;cm}}.\] Biết rằng bốn điểm \[A,B,C,D\] cùng thuộc một đường tròn. Gọi \[O\] là giao điểm của hai đường chéo \[AC\] và \[BD.\] Tâm và bán kính của đường tròn đó là (Toán học - Lớp 9)