Giá trị của \(I = \int\limits_1^2 {\frac{x}dx} \) là
Bạch Tuyết | Chat Online | |
06/09 23:14:14 (Toán học - Lớp 12) |
5 lượt xem
Giá trị của \(I = \int\limits_1^2 {\frac{x}dx} \) là
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \(I = \frac{3} + \frac{1}{2}\ln 2.\) 0 % | 0 phiếu |
B. \(I = \frac{3} + 2\ln 2.\) 0 % | 0 phiếu |
C. \(I = \frac{3} - 4\ln 2.\) 0 % | 0 phiếu |
D. \(I = 11 - 4\ln 2.\) 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Giá trị của \(I = \int\limits_{\sqrt 5 }^{2\sqrt 3 } {\frac{1}{{x\sqrt {{x^2} + 4} }}dx} \) là (Toán học - Lớp 12)
- Giá trị của \(I = \int\limits_0^{\frac{1}{2}} {\sqrt {1 - {x^2}} dx} \) là (Toán học - Lớp 12)
- Giá trị của \(I = \int\limits_0^\pi {{{\cos }^2}x.\sin xdx} \) là (Toán học - Lớp 12)
- Biết \(\int\limits_{ - \pi }^\pi {\frac{{{{\cos }^2}x}}}}dx = m} \). Giá trị của \(\int\limits_{ - \pi }^\pi {\frac{{{{\cos }^2}x}}}dx} \) bằng (Toán học - Lớp 12)
- Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{e^x} + m,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x \ge 0\\2x\sqrt {3 + {x^2}} ,\,\,\,\,\,khi\,\,x < 0\end{array} \right.\) liên tục trên \(\mathbb{R}\). Biết \(\int_{ - 1}^1 {f\left( x \right)dx} = ... (Toán học - Lớp 12)
- Cho \(\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{3}} {\frac{{{{\cos }^2}x + \sin x.\cos x + 1}}{{{{\cos }^4}x + \sin x.{{\cos }^3}x}}} dx = a + b\ln 2 + c\ln \left( {1 + \sqrt 3 } \right)\), với \(a,b,c\) là các số hữu tỉ. Giá trị abc bằng (Toán học - Lớp 12)
- Tích phân \(A = \int\limits_0^{\frac{\pi }{2}} {\frac{{\sin x}}{{\sin x + \cos x}}dx} \) bằng (Toán học - Lớp 12)
- Biết rằng tích phân \(\int\limits_1^2 {\frac{{{x^2} + 5x + 6}}dx = a\ln 2 + b\ln 3 + c\ln 5,} \) với \(a,b,c\) là các số nguyên. Giá trị biểu thức \(S = a + bc\) là bao nhiêu? (Toán học - Lớp 12)
- Cho \(\int\limits_2^3 {\frac{{{x^2} + x}}dx} = a\ln 2 + b\ln 3,\) với \(a,b \in \mathbb{Z}\). Giá trị biểu thức \({a^2} - ab - b\) là (Toán học - Lớp 12)
- Cho \(\int\limits_1^2 {\frac{x}{{{{\left( {x + 1} \right)}^2}}}dx = a + b.\ln 2 + c.\ln 3} \), với \(a,b,c\) là các số hữu tỷ. Giá trị của \(6a + b + c\) bằng (Toán học - Lớp 12)
Trắc nghiệm mới nhất
- Về vị trí địa lí, Việt Nam nằm ở phía nào của bán đảo Đông Dương?
- Nước ta có chung đường biển với nước nào sau đây?
- HIEUTHUHAI sinh năm bao nhiêu?
- Cho bát giác đều \[ABCDEFGH\] có tâm \[O.\] Phép quay thuận chiều \[135^\circ \] tâm \[O\] biến điểm \[D\] của bát giác đều \[ABCDEFGH\] thành điểm nào? (Toán học - Lớp 9)
- Một lục giác đều và một ngũ giác đều chung cạnh \[AD\] (như hình vẽ). Số đo góc \(BAC\) là (Toán học - Lớp 9)
- III. Vận dụng Cho lục giác đều \[ABCDEF\] tâm \[O.\] Gọi \[M,{\rm{ }}N\] lần lượt là trung điểm của \[EF,{\rm{ }}BD.\] Khẳng định nào sau đây là sai? (Toán học - Lớp 9)
- Cho hình ngũ giác đều \[ABCDE\] tâm \[O\]. Phép quay thuận chiều tâm \[O\] biến điểm \[A\] thành điểm \[E\] thì điểm \[C\] biến thành điểm (Toán học - Lớp 9)
- Cho hình thoi \[ABCD\] có góc \(\widehat {ABC} = 60^\circ \). Phép quay thuận chiều tâm \[A\] một góc \(60^\circ \) biến cạnh \[CD\] thành (Toán học - Lớp 9)
- Cho tam giác đều tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến tam giác trên thành chính nó là > (Toán học - Lớp 9)
- Cho hình vuông tâm \[O\]. Số phép quay thuận chiều tâm \[O\] góc α với \[0^\circ \le \alpha < 360^\circ \], biến hình vuông trên thành chính nó là (Toán học - Lớp 9)