Cho tứ diện ABCD có AB = a;AC = BC = AD = BD =\(\frac{{a\sqrt 3 }}{2}\). Gọi M,N là trung điểm của AB,CD. Góc giữa hai mặt phẳng (ABD);(ABC) là \[\alpha \] . Tính \[cos\alpha \] biết mặt cầu đường kính MN tiếp xúc với cạnh AD.
Trần Đan Phương | Chat Online | |
05/09 12:37:40 (Tổng hợp - Lớp 12) |
4 lượt xem
Cho tứ diện ABCD có AB = a;AC = BC = AD = BD =\(\frac{{a\sqrt 3 }}{2}\). Gọi M,N là trung điểm của AB,CD. Góc giữa hai mặt phẳng (ABD);(ABC) là \[\alpha \] . Tính \[cos\alpha \] biết mặt cầu đường kính MN tiếp xúc với cạnh AD.
Vui lòng chờ trong giây lát!
Lựa chọn một trả lời để xem Đáp án chính xác Báo sai đáp án hoặc câu hỏi |
Số lượng đã trả lời:
A. \[2 - \sqrt 3 \] 0 % | 0 phiếu |
B. \[2\sqrt 3 - 3\] 0 % | 0 phiếu |
C. \[3 - 2\sqrt 3 \] 0 % | 0 phiếu |
D. \[\sqrt 2 - 1\] 0 % | 0 phiếu |
Tổng cộng: | 0 trả lời |
Bình luận (0)
Chưa có bình luận nào, bạn có thể gửi ý kiến bình luận tại đây:
Trắc nghiệm liên quan
- Cho hình chóp đều nn cạnh (n ≥ 3)). Cho biết bán kính đường tròn ngoại tiếp đa giác đáy là R và góc giữa mặt bên và mặt đáy bằng 600 , thể tích khối chóp bằng \(\frac{{3\sqrt 3 }}{4}{R^3}\). Tìm n? (Tổng hợp - Lớp 12)
- Cho một lập phương có cạnh bằng a. Tính diện tích mặt cầu nội tiếp hình lập phương đó (Tổng hợp - Lớp 12)
- Cho một mặt cầu bán kính bằng 1. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu? (Tổng hợp - Lớp 12)
- Một hình hộp chữ nhật có độ dài ba cạnh lần lượt là 2;2;1. Tìm bán kính R của mặt cầu ngoại tiếp hình hộp chữ nhật trên. (Tổng hợp - Lớp 12)
- Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân đỉnh A, AB = AC = a, AA’ =\(a\sqrt 2 \). Diện tích mặt cầu ngoại tiếp tứ diện CA′B′C′ là: (Tổng hợp - Lớp 12)
- Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a, \[SA \bot (ABCD)\;\] và SA = 2a. Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD. (Tổng hợp - Lớp 12)
- Cho tứ diện đều ABCD có cạnh a. Một mặt cầu tiếp xúc với các mặt của tứ diện có bán kính là: (Tổng hợp - Lớp 12)
- Cho hình chóp tam giác đều S.ABC có đáy ABC là tam giác đều cạnh a, cạnh \(SA = \frac{{2a\sqrt 3 }}{3}\). Gọi DD là điểm đối xứng của B qua C. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.ABD (Tổng hợp - Lớp 12)
- Hình chóp S.ABC có đáy ABC là tam giác vuông tại A có SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b, AC = c. Mặt cầu đi qua các đỉnh A,B,C,S có bán kính r bằng : (Tổng hợp - Lớp 12)
- Ba đoạn thẳng SA, SB, SC đôi một vuông góc tạo với nhau thành một tứ diện SABC với SA = a, SB = 2a, SC = 3a . Tính bán kính mặt cầu ngoại tiếp hình tứ diện đó là (Tổng hợp - Lớp 12)
Trắc nghiệm mới nhất
- Em hãy chọn đáp án đúng nhất Hỗn số chỉ số phần đã tô màu trong hình vẽ sau là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Hỗn số Chín và năm phần mười hai được viết là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Hỗn số \({\bf{3}}\frac{{\bf{1}}}{{\bf{5}}}\) Hỗn số trên được đọc là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Hỗn số \({\bf{5}}\frac{{\bf{7}}}{{\bf{9}}}\) Hỗn số trên được đọc là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Số thích hợp điền vào ô trống là: \[\frac{1}{2} + \frac{2}{3} < \frac{2} < \frac{4} - \frac{1}{6}\] (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Kết quả của biểu thức \[\frac{{\bf{9}}}{{\bf{4}}}{\bf{ - }}\left( {\frac{{\bf{2}}}{{\bf{3}}}{\bf{ + }}\frac{{\bf{5}}}{{\bf{6}}}} \right)\] là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Kết quả của phép tính \[\frac{{\bf{8}}}{{\bf{3}}}{\bf{ - }}\frac{{\bf{1}}}{{\bf{2}}}\] là: (Toán học - Lớp 5)
- Em hãy chọn đáp án đúng nhất Kết quả của phép tính \[\frac{{\bf{6}}}{{\bf{5}}}{\bf{ + }}\frac{{\bf{1}}}{{\bf{9}}}\] là: (Toán học - Lớp 5)
- Kết quả của phép tính \(\frac{{{\bf{12}}}}{{\bf{7}}}{\bf{:6}}\) là: (Toán học - Lớp 5)
- Kết quả của phép tính \({\bf{9 \times }}\frac{{\bf{7}}}{{{\bf{18}}}}\) là: (Toán học - Lớp 5)