Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a. Tứ giác ABCD là hình bình hành.
⇒AB=CD⇒AB=CD(tính chất hình bình hành)
và AB//CD⇒ˆABD=ˆBDCAB//CD⇒ABD^=BDC^(so le trong)
Xét ΔAMBΔAMBvà ΔCNDΔCNDcó:
AB=CDAB=CD(cmt)
ˆABM=ˆCDNABM^=CDN^(cmt)
BM=DNBM=DN(GT)
⇒ΔAMB=ΔCND(c.g.c)⇒ΔAMB=ΔCND(c.g.c)
b. Có AC cắt BD tại O
=> O là trung điểm của AC => OA = OC.
=> O là trung điểm của BD => OB = OD.
Có OB = OM + MD
OD = ON + ND
mà OB = OD, MB = ND
=> OM = ON => O là trung điểm của MN.
Trong tứ giác AMCN có:
OA = OC, OM = ON
=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.
c)MN=MB(1/3BD)
=>MI là đương TB của BNC
=>MI =1/2NC
NC=AM(TC HBH)
=>2MI=AM
d)IC//AK
AI//KC
=>AKCI là hbh
AC∩∩IK
O LÀ TĐ CỦA AC
=>O LÀ TĐ IK
=> I và K đối xứng với nhau qua O
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |