Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại A, M là một điểm thuộc cạnh AC (M khác A và C ). Đường tròn đường kính MC cắt BC tại N và cắt tia BM tại I

Giúp mk câu B đi các hommie
----- Nội dung dịch tự động từ ảnh -----
BÀI 9. Cho tam giác ABC vuông tại A, M là một điểm thuộc cạnh AC (M khác A và C ).
Đường tròn đường kính MC cắt BC tại N và cắt tia BM tại I. Chứng minh rằng :
a) ABNM và ABCI là các tứ giác nội tiếp đường tròn.
b) NM là tia phân giác của góc ANI.
c) BM.BI+ CM.CA=AB²+ AC².
BÀI 10 - Dành cho 9a1
1 Xem trả lời
Hỏi chi tiết
447
2
0
Bảo Yến
20/02/2023 12:58:39
+5đ tặng
a) Xét tứ giác ABNM có :
góc BAC= 90 độ ( gt )
góc MNB = 90 độ vì góc MNC = 90 độ ( góc nội tiếp chan nửa đường tròn)
=> góc BAC + góc MNB = 180 độ
=> tứ giác ABNM nội tiếp đc đường tròn
Xét tứ giác ABCI:
góc BAC= 90 độ
góc BIC = 90 độ ( góc nội tiếp chan nua duong tron)
=> A và I cũng nhìn BC dưới 1 góc vuông
=>Tu giac ABCI noi tiep dc duong tron
b)Ta co: goc ANM= goc ABM ( cung chan cung AM)
goc INM = goc ICM ( cung chan cung IM)
Ma goc ABM= goc ICM ( cung chan cung AI)
=>goc ANM= goc INM
Vay : NM là tia phân giác của góc ANI.
c) Ta co : tam giac BNM ~ tam giac BIC(g-g)

=>BM/BC=BN/BI
=>BM.BI=BC.BN (1)
mặt khác: tam giác MNC ~ tam giác BAC(g-g)
=>CM/BC=CN/CA
=>CM.CA=BC.CN (2)
Tu (1) va (2), suy ra:
BM.BI +CM.CA= BC.BN+BC.CN=BC(BN+CN)=BC.BC=BC^2
Ma BC^2=AB^2+AC^2 ( D/l Pytagore)
Vay: BM.BI+CM.CA=AB^2+AC^2

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×