LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

H = 1x99+2x98+3x97+...+50x50 K = 1x99+3x97+5x95+...+49x51

H=1x99+2x98+3x97+...+50x50
K=1x99+3x97+5x95+...+49x51
1 trả lời
Hỏi chi tiết
268
Tham khảo câu trả lời từ Trợ lý ảo Lazi
To find the value of H, we can use the formula for the sum of an arithmetic series:

H = (n/2)(first term + last term)

In this case, the first term is 1 and the last term is 50. So we have:

H = (50/2)(1 + 50)
H = 25(51)
H = 1275

To find the value of K, we need to sum the products of odd numbers from 1 to 99 with their corresponding even numbers from 99 to 51. We can rewrite K as follows:

K = 1x99 + 3x97 + 5x95 + ... + 49x51

Notice that each term in K is the product of an odd number and an even number, and the difference between consecutive odd numbers is 2. Similarly, the difference between consecutive even numbers is also 2.

We can rewrite K as the sum of two arithmetic series:

K = (1x99 + 3x97 + 5x95 + ... + 49x51) + (2x98 + 4x96 + 6x94 + ... + 50x52)

Using the formula for the sum of an arithmetic series, we can calculate each part separately.

For the first part:

K1 = (n/2)(first term + last term)
= (25/2)(1 + 49)
= 25(50)
= 1250

For the second part:

K2 = (n/2)(first term + last term)
= (25/2)(2 + 50)
= 25(52)
= 1300

Finally, we can find K by adding K1 and K2:

K = K1 + K2
= 1250 + 1300
= 2550

Therefore, the value of H is 1275 and the value of K is 2550.
2
0
doãn thu hằng
10/07/2023 18:10:59
+5đ tặng

1.99 + 2.98 + 3.97 + ..... + 49.51 + 50.50

= 1..99 + 2.(99 - 1) + 3.(99 - 2) + ..... + 49.(99 - 48) + 50.(99 - 49)

= 1.99 + 2.99 - 1.2 + 3.99 - 2.3 + ........ + 49.99 - 48.49 + 50.99 - 49.50

= (1.99 + 2.99 + 3.99 + ..... + 49.99 + 50.99) - ( 1.2 + 2.3 + ........ + 49.50)

= 99(1 + 2 + 3 + ..... + 50) - ( 1.2 + 2.3 + ........ + 49.50)

= 99.50.51/2−49.50.51/3

=84575

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư