a)(35x³+41x²+13x-5):(5x-2) b)x⁴-6x³+16x²-22x+15 c)(3x⁴-8x³-10x²+8x-5):(3x²-2x+1) d)(2x³-9x²+19x-15):(x²-3x+5) e)(15x⁴-x³-x²+41x-70):(3x²-2x+7)
0 Xem trả lời
57 Tham khảo câu trả lời từ Trợ lý ảo Lazi a) To divide (35x³+41x²+13x-5) by (5x-2), we can use long division: 7x² + 11x + 6 --------------------- 5x - 2 | 35x³ + 41x² + 13x - 5 - (35x³ - 14x²) ----------------- 55x² + 13x - (55x² - 22x) ---------------- 35x - 5 - (35x - 14) ------------- 9 Therefore, the result is 7x² + 11x + 6 with a remainder of 9. b) The expression x⁴-6x³+16x²-22x+15 cannot be divided by any linear expression (in the form ax+b) since the degree of the divisor is 1 and the degree of the dividend is 4. Therefore, this expression cannot be divided further. c) To divide (3x⁴-8x³-10x²+8x-5) by (3x²-2x+1), we can use long division: x² - 2x - 3 --------------------- 3x² - 2x + 1 | 3x⁴ - 8x³ - 10x² + 8x - 5 - (3x⁴ - 2x³ + x²) --------------------- -6x³ - 11x² + 8x + (6x³ - 4x² + 2x) ------------------- -15x² + 10x - 5 + (15x² - 10x + 5) ----------------- 0 Therefore, the result is x² - 2x - 3 with no remainder. d) To divide (2x³-9x²+19x-15) by (x²-3x+5), we can use long division: 2x - 3 --------------------- x² - 3x + 5 | 2x³ - 9x² + 19x - 15 - (2x³ - 6x² + 10x) ------------------- -3x² + 9x - 15 + (3x² - 9x + 15) ---------------- 0 Therefore, the result is 2x - 3 with no remainder. e) To divide (15x⁴-x³-x²+41x-70) by (3x²-2x+7), we can use long division: 5x² + 4x - 10 --------------------- 3x² - 2x + 7 | 15x⁴ - x³ - x² + 41x - 70 - (15x⁴ - 10x³ + 35x²) ----------------------- 9x³ - 36x² + 41x - 70 - (9x³ - 6x² + 21x) ------------------- -30x² + 20x - 70 + (30x² - 20x + 70) ----------------- 0 Therefore, the result is 5x² + 4x - 10 with no remainder.