Tính 1/(1+√5 ) + 1/(√9 + √5) + 1/(√9+√13) + ... + 1/(√2013 + √2017) 1/(1+√5 ) + 1/(√9 + √5) + 1/(√9+√13) + ... + 1/(√2013 + √2017)
Tham khảo câu trả lời từ Trợ lý ảo Lazi To simplify the expression, we can rationalize the denominators of each fraction. For the first fraction, we have: 1/(1+√5) = (1-√5)/(1+√5)(1-√5) = (1-√5)/(1-5) = (1-√5)/(-4) = (√5-1)/4 For the second fraction, we have: 1/(√9 + √5) = (√9 - √5)/(√9 + √5)(√9 - √5) = (√9 - √5)/(9 - 5) = (√9 - √5)/4 = (√9 - √5)/2 For the third fraction, we have: 1/(√9 + √13) = (√9 - √13)/(√9 + √13)(√9 - √13) = (√9 - √13)/(9 - 13) = (√9 - √13)/(-4) = (√13 - √9)/4 Continuing this pattern, we can see that each fraction can be simplified to (√n+2 - √n)/4. Now, let's look at the sum of all these fractions: (√5-1)/4 + (√9-√5)/4 + (√13-√9)/4 + ... + (√2017-√2013)/4 Notice that the terms (√n+2 - √n) and (√n+6 - √n+2) cancel each other out: (√5-1)/4 + (√9-√5)/4 + (√13-√9)/4 + ... + (√2017-√2013)/4 = (√5-1)/4 + (√9-√5)/4 + (√13-√9)/4 + ... + (√2017-√2013)/4 + (√2021-√2017)/4 - (√2017-√2013)/4 We can see that all the terms in the middle cancel out, leaving us with: (√2021-1)/4 Therefore, the simplified expression is (√2021-1)/4.