Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho tam giác ABC vuông tại A có AC = 9cm, BC = 15cm

Cho tam giác ABC vuông tại A có AC=9cm, BC=15cm. Đường tròn (I) nội tiếp  tam giác ABC tiếp xúc với AB, BC, AC lần lượt tại D, E, F.

a)   Tứ giác ADIF là hình gì? Vì sao?

b)   Tính bán kính của (I).

0 Xem trả lời
Hỏi chi tiết
135
Tham khảo câu trả lời từ Trợ lý ảo Lazi
a) Tứ giác ADIF là hình chữ nhật. Vì tam giác ABC vuông tại A, nên góc BAC = 90 độ. Do đó, góc ADF = góc ABC = 90 độ. Tương tự, góc DFI = góc BAC = 90 độ. Vậy tứ giác ADIF có 4 góc vuông, là hình chữ nhật.

b) Gọi O là tâm của đường tròn (I). Ta có:

- Gọi M là trung điểm của BC, ta có AM là đường cao của tam giác ABC. Vì tam giác ABC vuông tại A, nên AM cũng là đường trung bình của tam giác ABC. Do đó, AM = MC = 7.5 cm.

- Gọi r là bán kính của đường tròn (I). Ta có:

+ Gọi H là hình chiếu vuông góc của O lên AB. Khi đó, OH = r.

+ Gọi K là hình chiếu vuông góc của O lên AC. Khi đó, OK = r.

+ Gọi L là hình chiếu vuông góc của O lên BC. Khi đó, OL = r.

- Ta có: AH = AM - MH = 7.5 - 4.5 = 3 cm.

- Ta có: AK = AM - MK = 7.5 - 3 = 4.5 cm.

- Ta có: BL = BM - ML = 7.5 - 4.5 = 3 cm.

- Áp dụng định lý Pythagoras trong tam giác vuông AOH, ta có:

AH^2 + OH^2 = AO^2.

3^2 + r^2 = (9 - r)^2.

9 + r^2 = 81 - 18r + r^2.

18r = 72.

r = 4 cm.

Vậy bán kính của đường tròn (I) là 4 cm.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×