Xét tam giác ABH vuông tại H có:
AI . AB = AH^2 (định lý giữa cạnh và đường cao trong tam giác vuông)
Xét tan giác ACH vuông tại H có:
AK . AC = AH^2 (định lý giữa cạnh và đường cao trong tam giác vuông)
=> AI . AB = AK . AC
=> AB/AC = AI/AK
Xét tam giác ABC và tam giác AKI có:
góc A chung
AB/AC = AI/AK
=> tam giác ABC ∽ tam giác AKI (c - g - c)
b, Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:
góc A chung
gócE = gócD = 90
=> tam giác ABD ∽ tam giác ACE (g - g)
=> AD/AE = AB/AC
Xét tam giác ABC và tam giác ADE có:
gócA chung
AD/AE = AB/AC
=> tam giác ABC ∽ tam giác ADE (c - g - c)
=> tam giác AKI ∽ tam giác ADE
=> AD/AK = AE/AI
=> ED // IK
Ta có: SBCDE = SABC - SADE
Ta lại có: tam giác ABC ∽ tam giác ADE
=> SADE/SABC = AD^2/AB^2
=> SADE = AD^2 . SABC/AB^2
=> SBCDE = SABC - AD^2 . SABC/AB^2
=> SBCDE = [ 1 - (AD^2/AB^2) ] . SABC
=> SBCDE = (AB^2 - AD^2/AB^2) . SABC
Mà AB^2 - AD^2 = BD^2 (định lý pytago với tam giác ABD)
=> SBCDE = (BD^2/AB^2) . SABC
Xét tam giác ABD có:
sinBAD = BD/AB
=> sin^2BAD = BD^2/AB^2
=> SBCDE = sin^2BAD . SABC
=> SBCDE = sin^2BAC . SABC