Cho đường tròn (O), đường kính BC = 2R (R không đổi). Lấy điểm A thuộc đường tròn (O) (A khác B, C), kẻ AH vuông góc với BC tại H. Vẽ đường tròn (I) đường kính AH cắt AB, AC thứ tự tại M, N.
a) Chứng minh MN = AH. b) Chứng minh: Tứ giác BMNC nội tiếp.
c) Kẻ đường kính AD của đường tròn (O), gọi K là trung điểm của HD. Chứng minh: K là tâm của đường tròn ngoại tiếp tứ giác BMNC. Tìm vị trí của điểm A trên đường tròn (O) sao cho đường tròn ngoại tiếp tứ giác BMNC có bán kính lớn nhấtBằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |