a= 2^2/1x3+3^2/2x4+4^2 /3x5 +.....+2011^2/2010x2012
0 Xem trả lời
32 Tham khảo câu trả lời từ Trợ lý ảo Lazi To simplify the expression, we can first calculate each term individually and then add them all together. a = (2^2)/(1*3) + (3^2)/(2*4) + (4^2)/(3*5) + ... + (2011^2)/(2010*2012) a = 4/3 + 9/8 + 16/15 + ... + 4044121/4044120 To find a common denominator for all the fractions, we can multiply each fraction by the product of all the denominators: a = (4*8*15*...*2010*2012 + 9*3*15*...*2010*2012 + 16*3*8*...*2010*2012 + ... + 4044121*3*8*...*2010)/(3*8*15*...*2010*2012) Now we can simplify the numerator by expanding each term: a = (4*8*15*...*2010*2012 + 9*3*15*...*2010*2012 + 16*3*8*...*2010*2012 + ... + 4044121*3*8*...*2010)/(3*8*15*...*2010*2012) a = (4*8*15*...*2010*2012 + 27*15*...*2010*2012 + 48*15*...*2010*2012 + ... + 12088263*15*...*2010*2012)/(3*8*15*...*2010*2012) a = (4 + 27 + 48 + ... + 12088263)/(3*8*15*...*2010*2012) Now we can find the sum of the series: a = (1/2)(12088263)(12088264)/(3*8*15*...*2010*2012) a = 730395726/2420835840 Therefore, the simplified expression for a is 730395726/2420835840.