Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có đường cao BH = 6cm, cạnh AC = 15cm. Trên cạnh AC lấy điểm M sao cho AM = 2 MC . Lấy điểm I là trung điểm của BM (điểm chính giữa của BM), kéo dài AI cắt BC tại K

Cho tam giác ABC có đường cao BH = 6cm, cạnh AC = 15cm. Trên cạnh AC lấy điểm M sao cho AM = 2 MC . Lấy điểm I là trung điểm của BM (điểm chính giữa của BM), kéo dài AI cắt BC tại K .
a) Tính diện tích tam giác ABC, diện tích tam giác BMC.
b) Tính tỉ số diện tích tam giác ABI và tam giác BIC.
c) So sánh 2 đoạn thẳng BK và KC. 
2 Xem trả lời
Hỏi chi tiết
515
2
2
Phương
03/06 21:59:48
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
2
Khánh Vy
03/06 22:02:34
+4đ tặng
Đáp án
a) Diện tích tam giác ABC = 1/2 * AC * BH = 1/2 * 15 * 6 = 45 cm^2.
 Diện tích tam giác BMC = 1/2 * MC * BH = 1/2 * (1/3 * AC) * BH = 1/2 * 5 * 6 = 15 cm^2.
 b) Tỉ số diện tích tam giác ABI và tam giác BIC = 1/2 * AB * AI / 1/2 * BC * IK = AB/BC = 1/2 (vì I là trung điểm của BM).
 c) BK = 1/2 * BC (vì I là trung điểm của BM). KC = 1/2 * BC (vì I là trung điểm của BM). Vậy BK = KC.
Giải thích:
ả) Diện tích tam giác ABC được tính bằng công thức 1/2 * cạnh đáy * chiều cao. Với cạnh đáy AC = 15 cm và chiều cao BH = 6 cm, ta có diện tích tam giác ABC = 1/2 * 15 * 6 = 45 cm^2.
 Diện tích tam giác BMC được tính bằng công thức 1/2 * cạnh đáy * chiều cao. Với cạnh đáy MC = 1/3 * AC = 5 cm và chiều cao BH = 6 cm, ta có diện tích tam giác BMC = 1/2 * 5 * 6 = 15 cm^2.
 b) Tỉ số diện tích tam giác ABI và tam giác BIC được tính bằng công thức 1/2 * cạnh đáy * chiều cao. Vì I là trung điểm của BM nên AB/BC = 1/2.
 c) Vì I là trung điểm của BM nên BK = 1/2 * BC và KC = 1/2 * BC. Vậy BK = KC.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×