Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm x: x^3 + 6x^2 + 3x + 2 = 0, x^4 + 2x^3 - 11x^2 + 4x + 15 = 0

x^3+6x^2+3x+2=0
x^4+2x^3-11x^2+4x+15=0
Cứu mình với!! Giải giúp mình 1/2 câu cũng đc!
0 Xem trả lời
Hỏi chi tiết
43
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Chào bạn! Mình sẽ giúp bạn giải một trong hai phương trình này nhé. Hãy bắt đầu với phương trình thứ nhất:

\[ x^3 + 6x^2 + 3x + 2 = 0 \]

Để giải phương trình bậc ba, chúng ta có thể thử tìm nghiệm nguyên bằng cách sử dụng định lý về nghiệm của đa thức. Định lý này nói rằng nếu một đa thức có nghiệm nguyên, thì nghiệm đó phải là ước của hệ số tự do (hệ số không chứa \(x\)).

Trong phương trình của chúng ta, hệ số tự do là 2. Các ước của 2 là: \(\pm 1, \pm 2\).

Chúng ta sẽ thử các giá trị này để xem liệu chúng có phải là nghiệm của phương trình hay không.

1. Thử \(x = 1\):
\[ 1^3 + 6 \cdot 1^2 + 3 \cdot 1 + 2 = 1 + 6 + 3 + 2 = 12 \neq 0 \]
Vậy \(x = 1\) không phải là nghiệm.

2. Thử \(x = -1\):
\[ (-1)^3 + 6 \cdot (-1)^2 + 3 \cdot (-1) + 2 = -1 + 6 - 3 + 2 = 4 \neq 0 \]
Vậy \(x = -1\) không phải là nghiệm.

3. Thử \(x = 2\):
\[ 2^3 + 6 \cdot 2^2 + 3 \cdot 2 + 2 = 8 + 24 + 6 + 2 = 40 \neq 0 \]
Vậy \(x = 2\) không phải là nghiệm.

4. Thử \(x = -2\):
\[ (-2)^3 + 6 \cdot (-2)^2 + 3 \cdot (-2) + 2 = -8 + 24 - 6 + 2 = 12 \neq 0 \]
Vậy \(x = -2\) không phải là nghiệm.

Như vậy, không có nghiệm nguyên nào trong các ước của 2. Chúng ta cần thử các phương pháp khác như phân tích đa thức hoặc sử dụng công thức nghiệm của phương trình bậc ba, nhưng những phương pháp này phức tạp hơn và có thể không dễ thực hiện bằng tay.

Thay vào đó, chúng ta có thể sử dụng phương pháp đồ thị hoặc các công cụ tính toán trực tuyến để tìm nghiệm gần đúng của phương trình này.

Nếu bạn cần giải phương trình thứ hai hoặc muốn tiếp tục với phương trình này bằng phương pháp khác, hãy cho mình biết nhé!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×