Tính 11/24 - 5/41 + 13/24 + 0,5 - 36/41 Tham khảo câu trả lời từ Trợ lý ảo Lazi Let's solve each part step by step. ### a) \( \frac{11}{24} - \frac{5}{41} + \frac{13}{24} + 0.5 - \frac{36}{41} \) First, combine the fractions with the same denominators: \[ \frac{11}{24} + \frac{13}{24} = \frac{24}{24} = 1 \] Next, combine the fractions with the denominator 41: \[ -\frac{5}{41} - \frac{36}{41} = -\frac{41}{41} = -1 \] Now, add the results: \[ 1 - 1 + 0.5 = 0.5 \] So, the result is: \[ 0.5 \] ### b) \( (-12) : \left( \frac{3}{4} - \frac{5}{6} \right) \) First, find the common denominator for the fractions inside the parentheses: \[ \frac{3}{4} = \frac{9}{12} \] \[ \frac{5}{6} = \frac{10}{12} \] Now, subtract the fractions: \[ \frac{9}{12} - \frac{10}{12} = -\frac{1}{12} \] Now, divide -12 by \(-\frac{1}{12}\): \[ (-12) \div \left( -\frac{1}{12} \right) = (-12) \times \left( -12 \right) = 144 \] So, the result is: \[ 144 \] ### c) \( (-6.5) \cdot 5.7 + 5.7 \cdot (-3.5) \) First, multiply the numbers: \[ (-6.5) \cdot 5.7 = -37.05 \] \[ 5.7 \cdot (-3.5) = -19.95 \] Now, add the results: \[ -37.05 + (-19.95) = -57 \] So, the result is: \[ -57 \] ### d) \( 23 \frac{1}{4} - 13 \frac{1}{4} - \frac{5}{7} \) First, convert the mixed numbers to improper fractions: \[ 23 \frac{1}{4} = \frac{93}{4} \] \[ 13 \frac{1}{4} = \frac{53}{4} \] Now, subtract the fractions: \[ \frac{93}{4} - \frac{53}{4} = \frac{40}{4} = 10 \] Next, subtract \(\frac{5}{7}\) from 10: \[ 10 - \frac{5}{7} = \frac{70}{7} - \frac{5}{7} = \frac{65}{7} \] So, the result is: \[ \frac{65}{7} \] ### e) \( 16 \cdot \frac{2}{7} \cdot \left( -\frac{3}{5} \right) + 28 \cdot \frac{2}{7} \cdot \frac{3}{5} \) First, multiply the numbers: \[ 16 \cdot \frac{2}{7} = \frac{32}{7} \] \[ \frac{32}{7} \cdot \left( -\frac{3}{5} \right) = -\frac{96}{35} \] Next, multiply the other set of numbers: \[ 28 \cdot \frac{2}{7} = 8 \] \[ 8 \cdot \frac{3}{5} = \frac{24}{5} \] Now, convert \(\frac{24}{5}\) to a common denominator with \(-\frac{96}{35}\): \[ \frac{24}{5} = \frac{168}{35} \] Add the results: \[ -\frac{96}{35} + \frac{168}{35} = \frac{72}{35} \] So, the result is: \[ \frac{72}{35} \] ### f) \( 4 : \left( 4 \frac{4}{3} - \frac{1}{2} \right) : \left( 6 \frac{2}{5} - \left( -\frac{7}{15} \right) \right) \) First, convert the mixed numbers to improper fractions: \[ 4 \frac{4}{3} = \frac{16}{3} \] \[ 6 \frac{2}{5} = \frac{32}{5} \] Now, subtract and add the fractions: \[ \frac{16}{3} - \frac{1}{2} = \frac{32}{6} - \frac{3}{6} = \frac{29}{6} \] \[ \frac{32}{5} + \frac{7}{15} = \frac{96}{15} + \frac{7}{15} = \frac{103}{15} \] Now, divide 4 by the results: \[ 4 \div \frac{29}{6} = 4 \times \frac{6}{29} = \frac{24}{29} \] \[ \frac{24}{29} \div \frac{103}{15} = \frac{24}{29} \times \frac{15}{103} = \frac{360}{2987} \] So, the result is: \[ \frac{360}{2987} \]