Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho A = −4x^2+4x = 15. Chứng minh (x ^ 2 - x + 3)(- 2x ^ 2 + 3x - 5) = - 2x ^ 4 + 5

a) −4x^2+4x = 15. Chứng minh (x ^ 2 - x + 3)(- 2x ^ 2 + 3x - 5) = - 2x ^ 4 + 5
0 Xem trả lời
Hỏi chi tiết
37
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh tỉ lệ \((x^2 - x + 3)(-2x^2 + 3x - 5) = -2x^4 + 5\) khi \(A = -4x^2 + 4x = 15\), bạn có thể bắt đầu bằng cách thực hiện phép nhân hai đa thức bên trái.

**Bước 1: Tính tích \((x^2 - x + 3)(-2x^2 + 3x - 5)\)**

Ta sẽ nhân từng phần một cẩn thận:

\[
= x^2(-2x^2 + 3x - 5) - x(-2x^2 + 3x - 5) + 3(-2x^2 + 3x - 5)
\]

Đầu tiên, nhân \(x^2\) với từng hạng tử trong \(-2x^2 + 3x - 5\):

\[
= -2x^4 + 3x^3 - 5x^2
\]

Tiếp theo, nhân \(-x\) với từng hạng tử trong \(-2x^2 + 3x - 5\):

\[
= 2x^3 - 3x^2 + 5x
\]

Cuối cùng, nhân 3 với từng hạng tử trong \(-2x^2 + 3x - 5\):

\[
= -6x^2 + 9x - 15
\]

**Bước 2: Cộng tất cả các hạng tử lại với nhau**

Bây giờ ta sẽ cộng các hạng tử lại:

\[
-2x^4 + (3x^3 + 2x^3) + (-5x^2 - 3x^2 - 6x^2) + (5x + 9x) - 15
\]

\[
= -2x^4 + 5x^3 - 14x^2 + 14x - 15
\]

**Bước 3: So sánh với -2x^4 + 5**

Nếu thay \(A = 15\) vào phương trình, tức là ta cần \(-4x^2 + 4x = 15\), hãy thử giải để tìm giá trị của \(x\):

\[
-4x^2 + 4x - 15 = 0
\]

Sử dụng công thức nghiệm của phương trình bậc 2:

\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]

Với \(a = -4\), \(b = 4\), \(c = -15\):

\[
x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot (-4) \cdot (-15)}}{2 \cdot (-4)}
\]
\[
= \frac{-4 \pm \sqrt{16 - 240}}{-8}
\]

Trong trường hợp này, nghiệm sẽ không có giá trị thực do biểu thức dưới căn trở thành âm (16 - 240 < 0).

Do đó, phương trình ban đầu gây ra vấn đề về tính thực tế của nó. Do chưa có giá trị hợp lệ cho \(x\), việc chứng minh dường như không thể thực hiện được với giá trị đã cho.

Trên thực tế, dễ thấy là nếu phép nhân của hai đa thức cho ra kết quả không tương đương với như yêu cầu, bạn sẽ không thể chứng minh bằng giá trị sẵn có được. Tôi khuyên bạn nên kiểm tra lại điều kiện đầu bài hoặc xác định lại yêu cầu.

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×