Bài tập  /  Bài đang cần trả lời

Hình bình hành ABCD, các phân giác A, D cắt nhau tại M. các phân giác BC cắt nhau tại N. CMR : MN//AB

Hình bình hành ABCD, các phân giác A,D cắt nhau tại M. các phân giác B.C cắt nhau tại N. CmR : MN//AB
1 Xem trả lời
Hỏi chi tiết
38
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh rằng đường thẳng MN song song với AB trong hình bình hành ABCD, ta sẽ sử dụng định nghĩa và tính chất của phân giác cũng như các tính chất của hình bình hành.

1. **Định nghĩa phân giác**: Phân giác của một góc là đường thẳng chia góc đó thành hai góc bằng nhau.

2. **Tính chất của hình bình hành**: Các cạnh đối diện của hình bình hành là song song và có độ dài bằng nhau. Ta có \(AB \parallel CD\) và \(AD \parallel BC\).

3. **Ký hiệu các góc**:
- Gọi \( \angle DAB \) là \( \alpha \).
- Gọi \( \angle ABC \) là \( \beta \).
- Do ABCD là hình bình hành nên \( \alpha = \angle BCD \) và \( \beta = \angle DAB \).

4. **Phân giác của các góc**:
- Phân giác AD sẽ chia góc \( \angle DAB \) thành hai góc bằng nhau, tức là \( \angle MAD = \angle DAB / 2 = \alpha / 2 \).
- Tương tự, phân giác BC sẽ chia góc \( \angle ABC \) thành hai góc bằng nhau, tức là \( \angle NBD = \angle ABC / 2 = \beta / 2 \).

5. **Xem xét tam giác AMN và BNM**:
- Từ tính chất của phân giác, ta có:
- \( \angle AMD = \angle DAB / 2 = \alpha / 2 \)
- \( \angle BNC = \angle ABC / 2 = \beta / 2 \)

6. **Quan hệ giữa các góc**: Trong hình bình hành, ta có:
- \( \angle DAB + \angle ABC = 180^\circ \) (bổ sung cùng)
- Do đó, \( \alpha + \beta = 180^\circ \).

7. **Kết luận về góc**:
- Căn cứ vào các góc, ta nhận thấy:
- \( \angle AMN = \angle AMD\)
- \( \angle BNM = \angle BNC\)

8. **Suy ra MN // AB**:
- Nếu hai đường thẳng tạo thành một góc \( a \) và thêm một góc \( b\) sao cho \( a + b = 180^\circ\), thì hai đường thẳng đó là song song.
- Vì \( \angle AMN + \angle BNM = \alpha / 2 + \beta / 2 = (\alpha + \beta) / 2 = 90^\circ\).

Do vậy, ta đã chứng minh được rằng MN // AB.

\[
\Rightarrow \text{MN} \parallel \text{AB}.
\]

Điều này chứng tỏ rằng đường thẳng nối M và N là song song với cạnh AB của hình bình hành ABCD.
1
0
Nguyên
26/07/2024 15:25:50
+5đ tặng
BC // AB
=>MN//AB

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×