----- Nội dung dịch tự động từ ảnh ----- Bài: Tìm: M = \[ \left( (c - \frac{1}{2})^3 - \left( \frac{3}{4} \right)^3 \cdot ( - c - 2 )^2 \right) : \left[ 2(c-1)^5 + \left( \frac{3}{4} \right)^2 - \frac{3}{8} \right] \]
0 Xem trả lời
25 Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve for \( M \), let's break down the expression: \[ M = \left[ \left( c - \frac{1}{2} \right)^3 - \left( \frac{3}{4} \right)^3 \cdot (-c - 2)^2 \right] : \left[ 2(c - 1)^5 + \left( \frac{3}{4} \right)^2 - \frac{3}{8} \right] \] 1. **Calculate the numerator**: - First term: \( \left( c - \frac{1}{2} \right)^3 \) - Second term: \( -\left( \frac{3}{4} \right)^3 \cdot (-c - 2)^2 \) Substitute \( \left( \frac{3}{4} \right)^3 = \frac{27}{64} \) to evaluate the second term. 2. **Calculate the denominator**: - First term: \( 2(c - 1)^5 \) - Second term: \( \left( \frac{3}{4} \right)^2 = \frac{9}{16} \) - Combine that with \( -\frac{3}{8} \). Now you'll need to simplify the numerator and denominator separately, then form the quotient \( M \) by dividing the simplified numerator by the simplified denominator. If you have specific values for \( c \) or want a final expression, please provide them!