----- Nội dung dịch tự động từ ảnh ----- BUN : 10) M = (122) P = - (x - 4) (x2 - 2) + 3 (x3 - 1) (x2 + 2) + 3 (x - 2) - (x - 1) (x - 1) (x - 3) (x - 1)
0 trả lời
21 Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the given mathematical expressions, we need to simplify each one step by step. Let's break down each expression: ### 1. Expression \( M \) \[ M = \left( \frac{x^3 - 1 + x^3 + 1 - 4}{x^3 - x} \right) \cdot \left( \frac{x + 1}{x - 1} \right) \] Combine the like terms in the numerator: \[ M = \left( \frac{2x^3 - 4}{x^3 - x} \right) \cdot \left( \frac{x + 1}{x - 1} \right) \] Factor the numerator \( 2(x^3 - 2) \) and the denominator \( x(x^2 - 1) = x(x-1)(x+1) \): \[ M = \left( \frac{2(x^3 - 2)}{x(x - 1)(x + 1)} \right) \cdot \left( \frac{x + 1}{x - 1} \right) \] Next, simplify: \[ M = \frac{2(x^3 - 2)(x + 1)}{x(x - 1)(x + 1)(x - 1)} \] Cancel \( (x + 1) \): \[ M = \frac{2(x^3 - 2)}{x(x - 1)^2} \] ### 2. Expression \( N \) \[ N = \left( \frac{x - 4 + 3}{x^2 - 2x} \right) \cdot \left( \frac{x + 2}{x - 2} \right) \cdot \left( -\frac{x + 2}{x - 2} \right) \] First, simplify the first part: \[ N = \left( \frac{x - 1}{x^2 - 2x} \right) \cdot \left( -\frac{(x + 2)^2}{(x - 2)^2} \right) \] Now factor: \[ N = -\frac{(x - 1)(x + 2)^2}{x(x - 2)^2} \] ### 3. Expression \( P \) \[ P = \left( \frac{x^2 + 3x + 2 - x}{x^2 + x - 2} \right) \cdot \left( \frac{1}{x + 1} + \frac{1}{x - 1} \right) \] First, combine the fraction in \( P \): \[ P = \left( \frac{x^2 + 2x + 2}{(x + 2)(x - 1)} \right) \cdot \left( \frac{2}{(x + 1)(x - 1)} \right) \] So, \[ P = \frac{2(x^2 + 2x + 2)}{(x + 2)(x^2 - 1)} \] You can keep simplifying further depending on what you're looking for. ### Summary So the simplified forms of the expressions are: - \( M = \frac{2(x^3 - 2)}{x(x - 1)^2} \) - \( N = -\frac{(x - 1)(x + 2)^2}{x(x - 2)^2} \) - \( P = \frac{2(x^2 + 2x + 2)}{(x + 2)(x^2 - 1)} \) If you have a specific goal, like solving for specific values or further simplifications, let me know!