Bài tập  /  Bài đang cần trả lời

Vẽ góc ADB có đỉnh D ở bên trong đường tròn. So sánh ADB với ACB

mk đag cần gấp ạ
----- Nội dung dịch tự động từ ảnh -----
d) Về góc \( ADB \) có đỉnh \( D \) ở bên trong đường tròn. So sánh \( ADB \) với \( ACB \).

e) Về góc \( AEB \) có đỉnh \( E \) ở bên ngoài đường tròn (E và C cùng phía đối với \( AB \)). So sánh \( AEB \) với \( ACB \).
1 Xem trả lời
Hỏi chi tiết
26
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để so sánh các góc ADB và ACB, ta sử dụng tính chất của các góc có đỉnh nằm trong hoặc ngoài đường tròn.

1. **Góc ADB (điểm D nằm trong đường tròn)**:
- Khi D nằm trong đường tròn, ta có mối quan hệ:
\[
\angle ADB = \frac{1}{2} \cdot (arc AB)
\]
(arc AB là cung AB của đường tròn).

2. **Góc ACB (điểm C nằm trên đường tròn)**:
- Khi C nằm trên đường tròn, công thức cho góc này là:
\[
\angle ACB = \frac{1}{2} \cdot (arc AB)
\]

Vậy ta có thể thấy rằng:
\[
\angle ADB = \angle ACB
\]

**Kết luận:** Góc \( \angle ADB \) bằng góc \( \angle ACB \).

### Đối với góc AEB (đỉnh E ở bên ngoài đường tròn):

- Nếu E nằm ngoài đường tròn, mối quan hệ của góc sẽ là:
\[
\angle AEB = \frac{1}{2} \cdot (arc AC - arc AB)
\]
- Trong khi góc ACB vẫn được tính như trước:
\[
\angle ACB = \frac{1}{2} \cdot (arc AB)
\]

**Kết luận:**
Từ hai công thức trên, ta không thể vào thẳng so sánh AEB với ACB mà cần xem xét các giá trị của các cung arc AC và arc AB.

- Thông thường, nếu \( arc AC \) lớn hơn \( arc AB \), thì \(\angle AEB > \angle ACB\), và ngược lại.

Do đó, ta có kết luận phụ thuộc vào vị trí của điểm E so với điểm C trong trường hợp này.
1
0
Đông
25/08/2024 10:44:46
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×