LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Xác định vị trí tương đối của E, P so với đường tròn (M; MO)

ong hệ trục tọa độ Oxy cho E(0:4), P(2:0) và M là điểm thuộc đoạn EP sao cho tung độ của M bằng 2. Vẽ đường tròn tâm M bán kính Mo. Xác định vị trí tương đối của E, P so với đường tròn (M; MO).
1 trả lời
Hỏi chi tiết
94
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để xác định vị trí tương đối của các điểm E, P so với đường tròn (M; MO), ta tiến hành như sau:

1. **Xác định tọa độ của M:**
- E có tọa độ \( E(0, 4) \)
- P có tọa độ \( P(2, 0) \)
- Đoạn EP có thể viết dưới dạng tham số bằng cách sử dụng phương trình đường thẳng đi qua hai điểm E và P.

Tính độ dốc của đoạn thẳng EP:
\[
d = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 4}{2 - 0} = \frac{-4}{2} = -2
\]
Sử dụng phương trình dạng điểm-slope để tìm phương trình của EP:
\[
y - 4 = -2(x - 0) \implies y = -2x + 4
\]

M có tung độ bằng 2, ta thay vào phương trình trên để tìm hoành độ của M:
\[
2 = -2x + 4 \implies 2x = 4 - 2 \implies 2x = 2 \implies x = 1
\]
Vậy tọa độ của M là \( M(1, 2) \).

2. **Tính khoảng cách OM:**
\[
O(0,0) \implies M(1, 2)
\]
Khoảng cách OM:
\[
OM = \sqrt{(1 - 0)^2 + (2 - 0)^2} = \sqrt{1 + 4} = \sqrt{5}
\]

3. **Xác định bán kính đường tròn:**
Dựa vào tọa độ của M và OM, bán kính r của đường tròn (M; MO) chính là \( r = \sqrt{5} \).

4. **Đặc điểm vị trí tương đối của E và P so với đường tròn:**
- Tính khoảng cách ME và PE:
- Khoảng cách \( ME \):
\[
ME = \sqrt{(1 - 0)^2 + (2 - 4)^2} = \sqrt{1 + 4} = \sqrt{5}
\]
- Khoảng cách \( PE \):
\[
PE = \sqrt{(1 - 2)^2 + (2 - 0)^2} = \sqrt{(-1)^2 + (2)^2} = \sqrt{1 + 4} = \sqrt{5}
\]

5. **So sánh với bán kính:**
- Đối với điểm E: \( ME = r \) (đúng bằng bán kính) => E nằm trên đường tròn.
- Đối với điểm P: \( PE = r \) (đúng bằng bán kính) => P cũng nằm trên đường tròn.

**Kết luận:**
Cả hai điểm E và P đều nằm trên đường tròn (M; MO).
2
1
Long
25/08 13:05:43
+5đ tặng

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư