Cho 9x² + 4y² = 20xy, \( (3x - 2y > 0) \) Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the equation \(9x^2 + 4y^2 = 20xy\), we can rearrange it into a standard form suitable for analysis. ### Step 1: Rearranging the equation We can rearrange the equation as follows: \[ 9x^2 - 20xy + 4y^2 = 0 \] This is a quadratic equation in terms of \(x\). ### Step 2: Using the quadratic formula For the quadratic \(ax^2 + bx + c = 0\), the quadratic formula gives us: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 9\), \(b = -20y\), and \(c = 4y^2\). ### Step 3: Calculate the discriminant Calculate the discriminant \(D\): \[ D = b^2 - 4ac = (-20y)^2 - 4 \cdot 9 \cdot 4y^2 = 400y^2 - 144y^2 = 256y^2 \] ### Step 4: Finding the roots Since the discriminant is positive, we have two real roots: \[ x = \frac{20y \pm \sqrt{256y^2}}{2 \cdot 9} = \frac{20y \pm 16y}{18} \] This will yield two solutions: 1. \(x_1 = \frac{36y}{18} = 2y\) 2. \(x_2 = \frac{4y}{18} = \frac{2y}{9}\) ### Step 5: Consider the condition \(3x > 2y > 0\) Given the condition \(3x > 2y\): - For \(x_1 = 2y\): \[ 3(2y) > 2y \Rightarrow 6y > 2y \Rightarrow 4y > 0 \text{ (true if } y > 0) \] - For \(x_2 = \frac{2y}{9}\): \[ 3\left(\frac{2y}{9}\right) > 2y \Rightarrow \frac{6y}{9} > 2y \Rightarrow \frac{2y}{3} > 2y \Rightarrow \frac{2}{3} > 2 \text{ (not true)} \] Thus, the only valid solution is \(x = 2y\). ### Step 6: Proving \( \frac{6x - 4y}{3x + 2y} = 1\) Now confirm that \( \frac{6x - 4y}{3x + 2y} = 1\) with \(x = 2y\): Substituting \(x = 2y\): \[ 6x - 4y = 6(2y) - 4y = 12y - 4y = 8y \] \[ 3x + 2y = 3(2y) + 2y = 6y + 2y = 8y \] Thus, \[ \frac{6x - 4y}{3x + 2y} = \frac{8y}{8y} = 1 \] ### Conclusion We have shown that if \(9x^2 + 4y^2 = 20xy\) and \(3x > 2y > 0\), then indeed \( \frac{6x - 4y}{3x + 2y} = 1\).