LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Phân tích đa thức thành nhân tử: x^2 + 9a^2x^2 + 6ax^2

Phân tích đa thức thành nhân tử : x^2 + 9a^2x^2 + 6ax^2
4 trả lời
Hỏi chi tiết
22
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để phân tích đa thức \( x^2 + 9a^2x^2 + 6ax^2 \) thành nhân tử, trước tiên ta có thể nhóm các hạng tử lại và sử dụng yếu tố chung.

Bước 1: Nhóm các hạng tử chung:

\[
x^2 + 9a^2x^2 + 6ax^2 = x^2(1 + 9a^2 + 6a)
\]

Bước 2: Xem xét biểu thức trong dấu ngoặc:

\[
1 + 9a^2 + 6a
\]

Đây là một đa thức bậc 2 đối với \( a \). Chúng ta sẽ thử phân tích biểu thức này.

Bước 3: Sử dụng công thức nghiệm của phương trình bậc 2 để kiểm tra:

Đặt \( P(a) = 1 + 6a + 9a^2 \). Ta có thể kiểm tra nghiệm của phương trình \( P(a) = 0 \) thông qua công thức nghiệm:

\[
D = b^2 - 4ac = 6^2 - 4 \cdot 9 \cdot 1 = 36 - 36 = 0
\]

Vì \( D = 0 \), phương trình có nghiệm duy nhất:

\[
a = -\frac{b}{2a} = -\frac{6}{2 \cdot 9} = -\frac{1}{3}
\]

Bước 4: Từ nghiệm này, ta phân tích \( 1 + 6a + 9a^2 \) có thể viết dưới dạng bình phương hoàn hảo:

\[
1 + 6a + 9a^2 = (3a + 1)^2
\]

Bước 5: Thay thế vào biểu thức và viết lại:

\[
x^2(1 + 6a + 9a^2) = x^2 (3a + 1)^2
\]

Vậy ta có kết quả cuối cùng là:

\[
x^2(3a + 1)^2
\]

Đây chính là phân tích đa thức \( x^2 + 9a^2x^2 + 6ax^2 \) thành nhân tử.
2
0
Sapient Killer
03/09 10:48:51
+5đ tặng
đề

( x + 3ax )^2

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Chou
03/09 10:49:31
+4đ tặng
x² + 9a²x² + 6ax² = x²(1 + 9a² + 6a)

 
Light Storm
Sai kết quả rồi ạ
1
0
Đặng Đình Tùng
03/09 10:49:58
+3đ tặng
x^2 +9a^2x^2 + 6ax^2
= x^2 + 2.x.3ax + (3ax)^2
= (x+3ax)^2
0
0

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư