Hình thang cân ABCD có đường chéo BD vuông góc với cạnh bên BC, BD là tia phân giác của-góc D. Tính chu vi của hình thang, biết BC = 3cm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có: AD = BC = 3 (cm) (tính chất hình thang cân)
∠(ABD) = ∠(BDC) (so le trong)
∠(ADB) = ∠(BDC) ( do DB là tia phân giác của góc D )
⇒ ∠(ABD) = ∠(ADB)
⇒∆ABD cân tại A
⇒ AB = AD = 3 (cm)
∆BDC vuông tại B
∠(BDC) + ∠C = 900
∠(ADC) = ∠C (gt)
Mà ∠(BDC) = 1/2 ∠(ADC) nên ∠(BDC) = 1/2 ∠C
∠C + 1/2 ∠C = 900 ⇒ ∠C = 600
Từ B kẻ đường thẳng song song AD cắt CD tại E.
Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE
⇒ DE = 3 (cm), BE = 3 (cm)
∠(BEC) = ∠(ADC) (đồng vị)
Suy ra: ∠(BEC) = ∠C
⇒∆BEC cân tại B có ∠C = 600
⇒∆BEC đều
⇒ EC = BC = 3 (cm)
CD = CE + ED = 3 + 3 = 6(cm)
Chu vi hình thang ABCD bằng:
AB + BC + CD + DA = 3 + 3 + 6 + 3 = 15 (cm)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |