Bài tập  /  Bài đang cần trả lời

Cho nửa đường tròn tâm O có đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đén AB. Vẽ đường tròn (M; MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M (C và D là các tiếp điểm khác H). Giả sử CD và AB cắt nhau tại I. Chứng minh rằng tích OH.OI không đổi

Cho nửa đường tròn tâm O có đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đén AB. Vẽ đường tròn (M; MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M (C và D là các tiếp điểm khác H). Giả sử CD và AB cắt nhau tại I. Chứng minh rằng tích OH.OI không đổi

1 Xem trả lời
Hỏi chi tiết
14
0
0
Trần Đan Phương
10/09/2024 12:34:22

Ta có: AC ⊥ CD và BD ⊥ CD (tính chất tiếp tuyến)

Suy ra: AC // BD hay tứ giác ABDC là hình thang

Mà OA = OB (bán kính (O))

Và AC = MD (bán kính (M))

Suy ra OM là đường trung bình của hình thang ABDC

Khi đó OM // AC. Suy ra: OM ⊥ CD hay góc (OMI) = 90°

Tam giác OMI vuông tại M có MH ⊥ OI

Theo hệ thức lượng trong tam giác vuông ta có: OM2 = OH.OI

Suy ra: OH.OI = R2 không đổi.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×