Chứng tỏ rằng đường thẳng mx + 3 + (3m - 1)y = 0 luôn đi qua một điểm cố định với mọi m. Tìm tọa độ điểm cố định đó?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Giả sử (x0; y0 ) là điểm cố định mà đường thẳng mx + 3 + (3m – 1)y = 0 luôn đi qua.
Ta có:
mx0 + 3 + (3m - 1) y0 = 0 với mọi m
⇔ mx0 + 3 + 3my0 -y0 = 0 với mọi m
⇔ m(x0 + 3y0) + 3 -y0= 0 với mọi m
Vậy điểm cố định mà đường thẳng luôn đi qua là (-9: 3)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |