Tìm điều kiện của tham số m dể phương trình cos2x − 4cosx + m = 0 có nghiệm.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét phương trình: cos2x – 4cosx + m = 0 (1)
Đặt t = cosx (|t| ≤ 1)
Khi đó phương trình (1) trở thành: t2 – 4t + m = 0 (2)
Để phương trình (1) có nghiệm khi phương trình (2) có nghiệm thỏa mãn |t| ≤ 1
Phương trình (2) có nghiệm khi:
Δ′ ≥ 0 ⇔ 4 – m ≥ 0 ⇔ m ≤ 4
Khi đó phương trình có nghiệm là: t=2+4−mt=2−4−m
Mà |t| ≤ 1
⇔2+4−m≤12−4−m≤1⇔4−m≤−1L2−4−m≤1⇔2−4−m≤1⇔2−4−m≤12−4−m≥−1⇔4−m≥14−m≤3⇔4−m≥14−m≤3⇔m≤3m≥−5
⇔ -5 ≤ m ≤ 3.
Kết hợp với điều kiện (*) ta được: −5 ≤ m ≤ 3
Vậy với −5 ≤ m ≤ 3 thì phương trình đã cho có nghiệm.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |