Cho góc xOy^. Lấy hai điểm A, B thuộc tia Ox sao cho OA < OB. Lấy hai điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:
a) AD = BC.
b) DEAB = DECD.
c) OE là tia phân giác của góc xOy.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Xét tam giác OAD và tam giác OCB có:
OA = OC (giả thiết)
O^ chung
OD = OB
Do đó: ∆OAD = ∆OCB (c.g.c)
Suy ra: AD = BC
b) Do OA = PC, OB = OD nên OB – OA = OD – OC hay AB = CD
Do ∆OAD = ∆OCB (c.g.c) nên ODA^=OBC^
ECD^ là góc ngoài tại định C của tam giác OBC nên ECD^=COB^+OBC^1
EAB^là góc ngoài tại định C của tam giác OAD nên EAB^=AOD^+ODA^2
Từ (1) và (2) suy ra: ECD^=EAB^
Xét tam giác EAB và ECD có:
ECD^=EAB^
AB = CD
EDC^=EBA^
Do đó: ∆EAB = ∆ECD (g.c.g)
c) Do ∆EAB = ∆ECD (g.c.g) nên BE = DE
Xét tam giác ODE và OBE có:
OD = OB
OE chung
BE = DE
Do đó: ∆ODE = ∆OBE (c.c.c)
Suy ra: EOD^=EOB^
Vậy OE là tia phân giác của xOy^
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |