Chứng tỏ rằng:
a) Tổng của 2 020 số lẻ bất kì luôn chia hết cho 2;
b) 1111 + 2222 + 3333 + 4444 + 5555 không chia hết cho 2;
c) 2 + 22 + 23 + … + 259 + 260 + 561 chia hết cho 5.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Tổng của hai số lẻ bất kì là một số chẵn nên tổng của 2020 số lẻ bất kì là một số chẵn nên chia hết cho 2.
b) Ta có 11 là số lẻ nên 1111 là số lẻ;
33 là số lẻ nên 3333 là số lẻ;
55 là số lẻ nên 5555 là số lẻ;
Khi đó: 1111 + 3333 + 5555 là số lẻ.
Mặt khác 2222; 4444 là các số chẵn nên 2222 + 4444 là số chẵn.
Vậy 1111 + 2222 + 3333 + 4444 + 5555 là số lẻ nên không chia hết cho 2.
c) Xét 2 + 22 + 23 + … + 259 + 260
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + … + (257 + 258 + 259 + 260)
= 2(1 + 2 + 22 + 23) + 25.(1 + 2 + 22 + 23) + … + 257.(1 + 2 + 22 + 23)
= 2.15 + 25.15 + … + 257.15
= 15.(2 + 25 + … + 257)
Vì 155 nên 15.(2 + 25 + … + 257)5 mà 561 cũng chia hết cho 5.
Nên 2 + 22 + 23 + … + 259 + 260 + 561 chia hết cho 5.
Vậy 2 + 22 + 23 + … + 259 + 260 + 561 chia hết cho 5.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |