Bài tập  /  Bài đang cần trả lời

Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau: b) y = x3 + 3x2 + 3x + 1.

Khảo sát sự biến thiên và vẽ đồ thị của mỗi hàm số sau:

b) y = x3 + 3x2 + 3x + 1.

1 Xem trả lời
Hỏi chi tiết
17
0
0
Đặng Bảo Trâm
10/09/2024 21:43:35

b) y = x3 + 3x2 + 3x + 1

1) Tập xác định: ℝ.

2) Sự biến thiên:

Ÿ Giới hạn tại vô cực:  limx→+∞y=+∞,  limx→−∞y=−∞.

Ÿ y' = 3x2 + 6x + 3 = 3(x + 1)2;

y' ≥ 0 với mọi x ∈ ℝ;

y' = 0 khi x = – 1.

Ÿ Bảng biến thiên:

Hàm số đồng biến trên khoảng (– ∞; + ∞).

Hàm số không có cực trị.

3) Đồ thị

Ÿ Giao điểm của đồ thị với trục tung: (0; 1).

Ÿ Giao điểm của đồ thị với trục hoành:

Giải phương trình x3 + 3x2 + 3x + 1 = 0 ta được x = – 1.

Vậy đồ thị hàm số giao với trục hoành tại điểm (– 1; 0).

Ÿ Đồ thị hàm số đi qua các điểm (– 1; 0), (0; 1), (– 2; – 1).

Vậy đồ thị hàm số y = x3 + 3x2 + 3x + 1 được cho như hình vẽ trên.

Tâm đối xứng của đồ thị hàm số đó là điểm I(– 1; 0).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×