Cho tứ giác ABCD có AB // CD, \(\widehat B = 135^\circ \), \(\widehat D = 70^\circ \), \(\widehat {ACB} = 25^\circ \) (Hình 8a). Tính số đo góc DAC.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Trong tam giác ABC, ta có: \(\widehat {ABC} + \widehat {BAC} + \widehat {BCA} = 180^\circ \)
Suy ra \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {BCA}} \right) = 180^\circ - \left( {135^\circ + 25^\circ } \right) = 20^\circ \).
Do AB // CD nên \(\widehat {ACD} = \widehat {BAC} = 20^\circ \) (hai góc so le trong).
Trong tam giác ACD, ta có: \(\widehat {ADC} + \widehat {ACD} + \widehat {DAC} = 180^\circ \)
Suy ra \(\widehat {DAC} = 180^\circ - \left( {\widehat {ADC} + \widehat {ACD}} \right) = 180^\circ - \left( {70^\circ - 20^\circ } \right) = 90^\circ \).
Vậy \(\widehat {DAC} = 90^\circ \).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |