Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Ta có \[\left\{ \begin{array}{l}\left( {ABB'A'} \right) \cap \left( {D'AB} \right) = AB\\\left( {ABB'A'} \right) \bot AB\end{array} \right.\] nên góc giữa mặt phẳng (ABB’A’) là góc giữa AD’ và AA’ hay \[\widehat {A'AD}\] = 30°
Suy ra \[AA' = \frac{{A'D'}}{{\tan 30^\circ }} = a\sqrt 3 \]
Ta có \[{S_{ABCD}} = a.a = {a^2}\].
Vậy thể tích hình hộp đứng ABCD.A'B'C'D' là:
VABCD.A’B’C’D’ = AA’ . SABCD = \[{a^2}\,.\,a\sqrt 3 = {a^3}\sqrt 3 \] (đvtt).
Vậy thể tích hình hộp đứng ABCD.A'B'C'D' là \[{a^3}\sqrt 3 \] (đvtt).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |