Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a; \(SA = a\sqrt 3 \); SA ^ (ABCD). Gọi M, N lần lượt là trung điểm của SB; SD, mặt phẳng (AMN) cắt SC tại I. Tính thể tích của khối đa diện ABCDMIN
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
Gọi O là tâm hình vuông.
SO cắt MN tại K Þ I là giao điểm của AK với SC.
Vì MN là đường trung bình của tam giác SBD nên K là trung điểm của SO.
Gọi A' là điểm đối xứng của A qua S, H là giao điểm của AK và SC.
Vì SO // A'C và K là trung điểm của SO
Þ H là trung điểm của A'C
Þ I là trọng tâm của tam giác AA'C
\( \Rightarrow SI = \frac{1}{3}SC\)
Ta có:
• \({V_{S.ABCD}} = \frac{1}{3}SA.{S_{ABCD}} = \frac{{{a^3}\sqrt 3 }}{3}\);
• \({V_{S.ABD}} = {V_{S.}}_{BCD} = \frac{1}{2}{V_{S.}}_{ABCD}\).
Khi đó: \({V_{S.AMIN}} = {V_{S.AMN}} + {V_{S.MIN}}\)
\( = \frac{1}{1}.\frac{1}{2}.\frac{1}{2}.{V_{S.ABD}} + \frac{1}{2}.\frac{1}{2}.\frac{1}{3}.{V_{S.BCD}}\)
\( = \frac{1}{4}{V_{S.ABD}} + \frac{1}{V_{S.BCD}} = \left( {\frac{1}{4} + \frac{1}} \right).\frac{1}{2}{V_{S.ABCD}} = \frac{1}{6}{V_{S.ABCD}}\).
Do đó: \({V_{ABCDMIN}} = {V_{S.ABCD}} - {V_{S.AMIN}} = \frac{5}{6}{V_{S.ABCD}} = \frac{{5{a^3}\sqrt 3 }}\).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |