Bài tập  /  Bài đang cần trả lời

Cho góc nhọn xOy. Trên hai cạnh Ox và Oy lần lượt lấy hai điểm A và B sao cho OA = OB. Tia phân giác góc xOy cắt AB tại I. a) Chứng minh: IA = IB. b) Gọi C nằm giữa hai điểm O và I. Chứng minh tam giác ABC là tam giác cân. c) Giả sử OA = 5 cm, AB = 6 cm. Tính độ dài OI.

Cho góc nhọn xOy. Trên hai cạnh Ox và Oy lần lượt lấy hai điểm A và B sao cho OA = OB. Tia phân giác góc xOy cắt AB tại I.

a) Chứng minh: IA = IB.

b) Gọi C nằm giữa hai điểm O và I. Chứng minh tam giác ABC là tam giác cân.

c) Giả sử OA = 5 cm, AB = 6 cm. Tính độ dài OI.

1 Xem trả lời
Hỏi chi tiết
13
0
0
Trần Bảo Ngọc
10/09 23:11:59

GT

\(\widehat {xOy}\) nhọn; lấy \(A \in {\rm{Ox}}\), \(B \in Oy\): OA = OB.

OI là tia phân giác \(\widehat {xOy}\) (\(I \in AB\)).

Điểm C nằm giữa hai điểm O và I;

OA = 5 cm, AB = 6cm.

KL

a) IA = IB.

b) ΔABC là tam giác cân.

c) Tính độ dài OI.

a) Xét ΔOIA và ΔOIB có:

OA = OB (gt)

\[{\widehat O_1} = {\widehat O_2}\] (vì OI là tia phân giác \(\widehat {xOy}\))

Cạnh OI chung.

Do đó ΔOIA = ΔOIB (c.g.c)  

Suy ra IA = IB (hai cạnh tương ứng).

b) Xét ΔOCA và ΔOCB có:

OA = OB (gt)

\[{\widehat O_1} = {\widehat O_2}\] (vì OI là tia phân giác \(\widehat {xOy}\))

Cạnh OC chung.

Do đó ΔOCA = ΔOCB (c.g.c)  

Do đó CA = CB (hai cạnh tương ứng)

Vậy tam giác ABC cân tại A.

c) ΔOBC có OI là đường trung tuyến cũng là đường phân giác, đường cao.

Áp dụng định lý Py-ta-go vào ΔAOI vuông tại I, ta có:

OA2 = OI2 + IA2                                                                                             

Suy ra: OI2 = OA2 – IA2 = 52 – 32 = 25 – 9 = 16

Do đó: O⁢I=16=4⁢(c⁢m).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×