Vẽ đồ thị các hàm số sau và chỉ ra các khoảng đồng biến, nghịch biến của chúng.
a) y = – 2x + 1;
b) y=-12x2.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
a) y = – 2x + 1
Tập xác định của hàm số này là D = \(\mathbb{R}\).
Với x = 0 thì y = 1, với x = 1 thì y = – 1.
Đồ thị hàm số y = – 2x + 1 là đường thẳng đi qua 2 điểm (0; 1) và (1; – 1).
Ta thấy đồ thị hàm số đi xuống từ trái qua phải trên \(\mathbb{R}\) nên hàm số nghịch biến trên \(\mathbb{R}\).
b) \(y = - \frac{1}{2}{x^2}\)
Tập xác định của hàm số này là D = \(\mathbb{R}\).
Bảng giá trị của x và y tương ứng:
x | 0 | 1 | – 1 | 2 | – 2 |
y | 0 | \( - \frac{1}{2}\) | \( - \frac{1}{2}\) | – 2 | – 2 |
Đồ thị hàm số \(y = - \frac{1}{2}{x^2}\) là đường cong đi qua các điểm (0; 0), 1;−12, −1;−12, (2; – 2), (– 2; – 2).
Ta thấy hàm số đi lên từ trái sang phải trên (– ∞; 0) và đi xuống từ trái sang phải trên (0; + ∞).
Vậy hàm số đồng biến trên khoảng (– ∞; 0) và nghịch biến trên khoảng (0; + ∞).
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |