Bài tập  /  Bài đang cần trả lời

Hai bạn An và Bình trao đổi với nhau. An nói: Tớ đọc ở một tài liệu thấy nói rằng cổng Trường Đại học Bách khoa Hà Nội (H.6.14) có dạng một parabol, khoảng cách giữa hai chân cổng là 8 m và chiều cao của cổng tính từ một điểm trên mặt đất cách chân cổng 0,5 m là 2,93 m. Từ đó tớ tính ra được chiều cao của cổng parabol đó là 12 m. Sau một hồi suy nghĩ, Bình nói: Nếu dữ kiện như bạn nói, thì chiều cao của cổng parabol mà bạn tính ra ở trên là không chính xác. Dựa vào thông tin mà An đọc được, em ...

Hai bạn An và Bình trao đổi với nhau.

An nói: Tớ đọc ở một tài liệu thấy nói rằng cổng Trường Đại học Bách khoa Hà Nội (H.6.14) có dạng một parabol, khoảng cách giữa hai chân cổng là 8 m và chiều cao của cổng tính từ một điểm trên mặt đất cách chân cổng 0,5 m là 2,93 m. Từ đó tớ tính ra được chiều cao của cổng parabol đó là 12 m.

Sau một hồi suy nghĩ, Bình nói: Nếu dữ kiện như bạn nói, thì chiều cao của cổng parabol mà bạn tính ra ở trên là không chính xác.

Dựa vào thông tin mà An đọc được, em hãy tính chiều cao của cổng Trường Đại học Bách khoa Hà Nội để xem kết quả bạn An tính được có chính xác không nhé!

1 Xem trả lời
Hỏi chi tiết
47
0
0
Tô Hương Liên
11/09/2024 09:05:02

Hướng dẫn giải

Cổng Trường Đại học Bách khoa Hà Nội có dạng là một parabol, giả sử parabol này có phương trình là y = ax2 + bx + c với a ≠ 0.

Chọn hệ trục tọa độ Oxy như hình vẽ với Oy là trục đối xứng của cổng parabol:

Khoảng cách giữa hai chân cổng là AB = 8 m.

O là trung điểm của AB nên AO = OB = 4 m.

Lấy điểm C cách A một khoảng 0,5 m, vì chiều cao của cổng tính từ một điểm trên mặt đất cách chân cổng 0,5 m là 2,93 m nên CD = 2,93 m.

Ta có: CO = AO – AC = 4 – 0,5 = 3,5 m.

Do đó ta có tọa độ các điểm là: A(– 4; 0), B(4; 0), C(– 3,5; 0), D(– 3,5; 2,93).

Ta thấy parabol đi qua các điểm A, B, D nên phương trình y = ax2 + bx + c thỏa mãn tọa độ các điểm A, B, D, do đó ta có:

0 = a . (– 4)2 + b . (– 4) + c ⇔ 16a – 4b + c = 0       (1)

0 = a . 42 + b . 4 + c ⇔ 16a + 4b + c = 0                  (2)

2,93 = a . (– 3,5)2 + b . (– 3,5) + c = 0 ⇔ 12,25a – 3,5b + c = 2,93          (3)

Lấy (2) trừ (1) theo vế ta được: 8b = 0 ⇔ b = 0 thay vào (1) và (3) ta có hệ:

\(\left\{ \begin{array}{l}16a + c = 0\\12,25a + c = 2,93\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{ - 293}}\\c = \frac\end{array} \right.\)

Do đó phương trình parabol: \(y = \frac{{ - 293}}{x^2} + \frac\).

Tọa độ đỉnh I\(\left( {0;\,\frac} \right)\).

Chiều cao của cổng parabol chính là tung độ đỉnh I và bằng \(\frac \approx 12,5\)m.

Vậy kết quả của bạn An tính ra là không chính xác.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×