Độ cao so với mặt đất của một quả bóng được ném lên theo phương thẳng đứng được mô tả bởi hàm số bậc hai h(t) = – 4,9t2 + 20t + 1, ở độ cao h(t) tính bằng mét và thời gian t tính bằng giây. Trong khoảng thời điểm nào trong quá trình bay của nó, quả bóng sẽ ở độ cao trên 5 m so với mặt đất?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Bóng đạt ở độ cao trên 5 m so với mặt đất, nghĩa là h(t) > 5.
Khi đó: – 4,9t2 + 20t + 1 > 5 (1)
⇔ – 4,9t2 + 20t – 4 > 0.
Xét tam thức f(t) = – 4,9t2 + 20t – 4 có ∆' = 102 – (– 4,9) . (– 4) = 80,4 > 0 nên f(t) có hai nghiệm t1 = \(\frac{{ - 10 + \sqrt {80,4} }}{{ - 4,9}} = \frac{{4,9}}\) và t2 = \(\frac{{ - 10 - \sqrt {80,4} }}{{ - 4,9}} = \frac{{4,9}}\).
Mặt khác hệ số a = – 4,9 < 0 nên ta có bảng xét dấu sau:
t | – ∞ \(\frac{{4,9}}\) \(\frac{{4,9}}\) + ∞ |
f(t) | – 0 + 0 – |
Do đó tập nghiệm của bất phương trình (1) là S = \(\left( {\frac{{4,9}};\frac{{4,9}}} \right)\).
Vậy trong khoảng thời điểm \(\left( {\frac{{4,9}};\frac{{4,9}}} \right)\) ≈ (0,21; 3,87) (giây) thì quả bóng sẽ ở độ cao trên 5 m so với mặt đất.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |