Bài tập  /  Bài đang cần trả lời

A. Các câu hỏi trong bài Cho phương trình \(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \). a) Bình phương hai vế phương trình để khử căn và giải phương trình nhận được. b) Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình đã cho hay không?

A. Các câu hỏi trong bài

Cho phương trình \(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \).

a) Bình phương hai vế phương trình để khử căn và giải phương trình nhận được.

b) Thử lại các giá trị x tìm được ở câu a có thỏa mãn phương trình đã cho hay không?

1 Xem trả lời
Hỏi chi tiết
15
0
0
Phạm Văn Bắc
11/09/2024 09:11:49

Hướng dẫn giải

a) Bình phương hai vế của phương trình \(\sqrt {{x^2} - 3x + 2} = \sqrt { - {x^2} - 2x + 2} \) ta được:

x2 – 3x + 2 = – x2 – 2x + 2 (1)

Giải phương trình trên ta có:

(1) ⇔ 2x2 – x = 0

⇔ x(2x – 1) = 0

⇔ x = 0 hoặc 2x – 1 = 0

⇔ x = 0 hoặc x = \(\frac{1}{2}\)

b) Thử lại ta có:

+ Với x = 0, thay vào phương trình đã cho ta được:

\(\sqrt {{0^2} - 3.0 + 2} = \sqrt { - {0^2} - 2.0 + 2} \)\( \Leftrightarrow \sqrt 2 = \sqrt 2 \) (luôn đúng).

+ Với x = \(\frac{1}{2}\), thay vào phương trình đã cho ta được:

\(\sqrt {{{\left( {\frac{1}{2}} \right)}^2} - 3.\frac{1}{2} + 2} = \sqrt { - {{\left( {\frac{1}{2}} \right)}^2} - 2.\frac{1}{2} + 2} \)\( \Leftrightarrow \sqrt {\frac{3}{4}} = \sqrt {\frac{3}{4}} \) (luôn đúng)

Vậy các giá trị x tìm được ở câu a thỏa mãn phương trình đã cho.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×