Chứng minh rằng, đường thẳng đi qua hai điểm A(a; 0), B(0; b) với ab ≠ 0 (H.7.3) có phương trình là \(\frac{x}{a} + \frac{y}{b} = 1\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Hướng dẫn giải
Ta có: \(\overrightarrow {AB} = \left( {0 - a;b - 0} \right) = \left( { - a;\,b} \right)\).
Suy ra đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {AB} = \left( { - a;b} \right)\)nên nó có một vectơ pháp tuyến là \(\overrightarrow n = \left( {b;\,a} \right)\).
Do đó phương trình tổng quát của đường thẳng AB đi qua điểm A và nhận \(\overrightarrow n \) làm vectơ pháp tuyến là: b(x – a) + a(y – 0) = 0 hay bx + ay – ab = 0 (1).
Do ab ≠ 0 nên ta chia cả hai vế của (1) cho ab, ta được:
\(\frac + \frac - \frac = \frac{0}\)
\( \Leftrightarrow \frac{x}{a} + \frac{y}{b} - 1 = 0\)
\( \Leftrightarrow \frac{x}{a} + \frac{y}{b} = 1\).
Vậy đường thẳng đi qua hai điểm A(a; 0), B(0; b) với ab ≠ 0 có phương trình là \(\frac{x}{a} + \frac{y}{b} = 1\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |